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The Grossberg Models - Additive,

Shunting and ART

Introduction to Unsupervised Learning and Feedback Recall

1. Additive (Grossberg) CAM Model

2. Shunting (Grossberg) CAM Model

3. Adaptive Resonance Theory

McCulloch-Pitts (1943)

Cohen- Additive (1967) Brain-State-in-a-Box (1977)

Grossberg Boltzmann Machine (1985)

(1983) BAM (1987)

Shunting (1973) Masking Field (1978, 1986)

CAM Models in Decreasing Generality

Additive Grossberg

� introduced by Grossberg in 1968.

� single-layer, autoassociative, nearest-neighbour classi�er that stores arbitrary analog spatial

patterns using either signal Hebbian or competitive learning.

� learns online and operates in continuous time.

� utilizes positive recurrent connections and negative lateral connections.

� the input to each PE can be either positive or negative.

Encoding

� signal Hebbian learning (the passive decay LTM equation)

_wij = ��wij + �S(aki )S(a
k
j )
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where wij is the symmetric (wij = wji) connection strength, S() is a sigmoid function, � is

a positive constant controlling the passive decay and � is a positive constant controlling the

signal Hebbian learning term and _wij =
dwij

dt
.

� Grossberg refers to the wij connections as long term memory (LTM).

� an alternative encoding procedure is the gated decay (competitive) LTM equation:

_wij = S(aki )[��wij + �S(akj )]

� this only allows changes to the LTM connections that have non-zero signals being emitted

from aki .

Recall

� FA activations are competitive and described by the Additive STM Equation:

_ai = ��ai + �

nX

j=1

S(aj)wji + Ii

where ai and aj are activations, Ii is the i
th input value, � is a positive constant controlling

activation decay and � is a positive constant controlling lateral feedback.

� Grossberg refers to the FA PE activation values as short term memory (STM).

� nearest-neighbour classi�cation

{ the FA PEs most closely resembling the presented input pattern will become maximally

activated.

{ those least resembling it will be nulli�ed.

� during recall

{ the winning FA PE saturates to 1 and nulli�ed FA PEs saturate to 0.

{ if activations are processed long enough, only one PE, an, will remain active.

Strengths

� ability to classify data in an unsupervised fashion.

� its provisions for online adaptation.

� both features are important if one is unable to obtain a priori data patterns.
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Limitations

� signal and noise are equally regarded and therefore both noise and signal are encoded ! the

noise saturation dilemma.

{ resolved by addition of an automatic gain control over the input signal that nulli�es noise

while abstracting and encoding the signal.

� later input patterns can be similar enough to encoded patterns that the input pattern will

create similar activations resulting in re-encoding over the previously encoded pattern and

irretrievable loss of that information! the stability-plasticity dilemma.

{ solved by adaptive resonance theory, 1976.

Notes

� has been proven globally stable using the Cohen-Grossberg theorem, 1983.

� capacity to store m = n3 patterns where n is the number of FA PEs.

� AG is stable when placed in VLSI despite the presence of unwanted spurious oscillations that

readily occur in assemblies with a large number of ampli�ers.

� inherent stability and fault-tolerance make hardware implementations very promising.

Shunting Grossberg

� introduced in 1973.

� single-layer competitive-cooperative, autoassociative, nearest-neighbour classi�er of analog

patterns.

� uses either signal Hebbian or competitive learning.

� learns online and operates in continuous time.

� there are separate positive and negative inputs to each FA PE.

� di�erence between Additive and Shunting Grossberg:

1. their activation dynamics.

2. their delineation of positive and negative inputs.

3. SG also contains automatic gain control recall dynamics that contrast enhances inputs

and nulli�es noise.

Encoding

� uses either the passive decay LTM or the gated decay LTM equation.
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Recall

� the shunting STM recall equation:

_ai = ��ai + (� � ai)[S(ai) + Ii]� (ai + �)[
nX

j=1

S(aj)wji + Ji]

where

{ Ii is the excitatory (positive) input

{ Ji is the inhibitory (negative) input

{ wij is the symmetric LTM connection from i to j PEs

{ � is a positive constant controlling passive decay

{ � is a positive constant controlling inhibitory input and lateral feedback.

� automatic gain control { the ampli�cation of signal and nulli�cation of noise { is implemented

through the shunting terms (��ai) and (ai+�) { these balance the input and feedback signals,

allowing the PE's activation to remain sensitive to the input signal and shunt noise.

Strengths

� global stability.

� online adaptation.

� unsupervised learning.

� great deal of neurological support.

Limitations

� the stability-plasticity dilemma.

� limited storage.

Adaptive Resonance Theory

� Concepts

{ active regulation of self-organizing learning.

{ recognition by attention and expectation.

� Motivation

{ the human ability to learn recognition codes in real-time through a process of self-

organization.
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� Design Problems

{ a basic design problem of intelligent systems that autonomously adapt in real-time to

unexpected environmental changes! the stability-plasticity dilemma.

{ how can a learning system be designed to remain plastic (adaptive) in response to signif-

icant events while remaining stable in response to irrelevant events?

{ how to preserve previously learned knowledge while continuing to learn new things.

� Key Computational Idea of ART

{ top down learned expectations focus attention upon bottom up information in a way

that protects previously learned memories from being eliminated by new learning and

enables new learning to be automatically incorporated into the total knowledge base of

the system in a globally self-consistent way.

ART Architecture

� neural networks that self-organize stable recognition codes in real-time in response to arbitrary

sequences of input patterns.

{ adaptive pattern recognition is a special case of the more general cognitive process of

hypothesis discovery, testing, search, classi�cation and learning.

Competitive Learning

� ART models grew out of an analysis of the competitive learning model.

� in response to certain input environments, the competitive learning model has very appealing

properties:

1. proven that, if not too many input patterns form not too many clusters relative to the

number of coding nodes in the output layer, learning of the recognition code eventually

stabilizes and the learning process elicits the best distribution of LTM traces that is

consistent with the structure of the input environment.

2. it has been shown that a competitive learning model does not always learn a temporally

stable code in response to an arbitrary input environment,

{ as input patterns pass into the system through time, the response of the system to

the same input pattern can be di�erent on each successive presentation of that input

pattern. The response to a given input pattern might never settle down as learning

proceeds.

� unstable learning is due to

1. learning that occurs in response to other intervening inputs.

2. simple changes in an input environment.

{ changes in the probabilities of inputs.

{ not peculiar to competitive learning models.
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ART 1 Architecture

� capable of stably learning a recognition code in response to an arbitrary sequence of binary

input patterns until it utilizes its full memory capacity.

� the adaptive weights (LTM traces) oscillate at most once during learning in response to an

arbitrary binary input sequence, yet do not get trapped in spurious memory states or local

minima.

� encodes a new input pattern, in part by changing the adaptive weights of a bottom up adap-

tive �lter, i.e. the pathways from a feature representation �eld F1 to a category representation

�eld F2.

� a second, top down adaptive �lter, contained in the pathways from F2 to F1, aids in self-

stabilization (learned expectations).

1. an input pattern I activates F1.

2. F1 activates the code, vj1, at F2 (receives the largest signal from F1).

3. F2 reads out its learned top down expectation to F1 { the bottom up input pattern and

top down learned expectation are matched across F1.

4. if these patterns are badly matched, F1 triggers a reset burst to F2 which shuts o� node

vj1 for the remainder of the coding cycle.

5. F1 reactivates the same bottom up signal pattern to F2 as before.

6. F2 reinterprets this signal and another node vj2 is chosen.

7. this parallel search (hypothesis testing) cycle { steps 1 to 6 { repeats itself automatically

at a very fast rate until one of three possibilities occur:

(a) a node vjm is chosen whose top down expectation approximately matches I .

(b) a previously uncommitted F2 node is selected.

(c) the full capacity of the system is used and cannot accommodate I .

8. if the hypothesis testing cycle ends in an approximate match, then the bottom up input

pattern and top down expectation deform the activity pattern X = (x1; x2; : : : ; xM)

across F1 into a net pattern that computes a fusion between the bottom up and top down

information { this represents the attentional focus of the system.

{ when fusion occurs, the bottom up and top down signal patterns mutually reinforce

each other via feedback and the system gets locked into a resonant state of STM

activations { now the LTM traces can learn any new information about the input

pattern that is represented within the fused activation pattern across F1.

{ learning occurs only in the resonant state.

{ the system allows one of its prior learned codes to be altered only if an input pattern

is su�ciently similar to what it already knows to risk a further re�nement of its

knowledge.
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9. if the hypothesis testing cycle ends by selecting an uncommitted node in F2, then the bot-

tom up and top down adaptive �lters that are linked to this node learn the F1 activation

pattern that is generated directly by the input.

10. if full capacity has been reached { learning is automatically inhibited.

Summary

� an ART 1 network either

1. re�nes its already learned codes based on new information that can be safely accommo-

dated into them via approximate matches, or

2. selects new nodes for initiating learning of novel recognition categories, or

3. it defends its fully committed memory against erasure by new input events (the capacity

catastrophe).

� non-self-stabilizing learning systems are not capable of functioning autonomously in ill-controlled

environments.

� learning in the approximate mode enables rapid and stable learning to occur while bu�ering

the system's memory against external noise.

� hypothesis testing cycle replaces internal system noise as a scheme for discovering a globally

correct solution and does not utilize an externally controlled temperature parameter or teacher.

Attentional Priming and Prediction

Matching by the 2

3
Rule

� regulation of the hypothesis testing cycle and the self-stabilization of learning.

� necessary to assume that F1 can distinguish between bottom up and top down signals.

� third F1 input source! an attentional gain control channel.

� when it is activated, it excites each F1 node equally.

� at least two out of three input sources are needed to supraliminally activate an F1 node { a

bottom up input, a top down input and a gain control input.

{ supraliminally activated { activated enough to generate output signals to other parts of

the net and initiate the hypothesis cycle.

� in top down processing mode

{ each F1 node receives a signal from at most one source { subliminally activated.

{ sensitize, prepare or attentionally prime F1 for future input patterns that may or may

not generate an approximate match with this expectation { enables ART to anticipate

future events or if locked into place (high gain top down) automatically suppresses all

inputs not in a category while amplifying those that are.
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� in bottom up mode

{ each active bottom up pathway can turn on the gain control node.

{ then all F1 nodes receive a gain control input but only those with bottom up input are

supraliminally activated.

� when both bottom up and top down inputs reach F1, the gain control is shut o�, so that only

those F1 nodes which receive top down con�rmation of the bottom up input are supraliminally

activated.

The Orienting Subsystem

� ART 1 architecture

1. attentional subsystem

2. orienting subsystem

� orienting subsystem

{ generates an output signal only when a mismatch occurs at level F1 of the attentional

system.

{ functions as a novelty detector.

{ output signal is called an STM reset wave because it selectively inhibits node(s) at

level F2 of the attentional subsystem.

{ it discon�rms the F2 hypothesis that led to the F1 mismatch.

The Orienting Subsystem and the 2

3
Rule

� when a bottom up input pattern is presented, each of the active input pathways to F1 also

sends a signal to the orienting subsystem where they are summed.

� when the input pattern activates F1, each of the activated F1 nodes sends an inhibitory signal

to the orienting subsystem.

� the total inhibitory signal is larger than the excitatory signal.

� thus in bottom up mode { balance between active F1 nodes and active input lines that prevents

a reset wave from being triggered.

� the balance is upset when a top down expectation is read out that mismatches.

� the total output from F1 then decreases by an amount that grows with the severity of the

mismatch.

� if the attenuation is su�ciently great, then inhibition from F1 to the orienting subsystem can

no longer prevent the orienting subsystem from emitting a reset wave.
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Vigilance

� a parameter � (vigilance parameter) determines how large a mismatch will be tolerated before

the orienting subsystem emits a reset wave.

� high vigilance

{ searches for new categories in response to small di�erences between input and expectation.

{ large number of �ne categories.

� low vigilance

{ enables the tolerance of large mismatches.

{ grouping according to a coarse measure of mutual similarity.

ART 2

� developed to handle analog patterns (1987).

� can autonomously classify arbitrary sequences of analog input patterns into categories of ar-

bitrary coarseness while suppressing arbitrary levels of noise.

� di�erent versions have been developed for

{ visual pattern recognition

{ speech perception

{ radar classi�cation.

ART 2 Characteristics

� level F1 is split into separate sublevels

{ for receiving bottom up patterns

{ for receiving top down patterns

{ for matching the bottom up and top down data.

� interfacing level of interneurons that matches the transformed bottom up and top down infor-

mation and feeds the results back to the bottom and top F1 levels.

Design Principles

Stability-Plasticity Tradeo�

See discussion in ART 1 section.
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Search-Direct Access Tradeo�

� ART 2 carries out a parallel search in order to regulate the selection of appropriate recognition

codes during learning, yet automatically disengages the search as an input pattern becomes

familiar.

� thereafter the familiar input directly accesses its recognition code.

Match-Reset Tradeo�

� system should be able to recognize and react to arbitrary small di�erences between an active

F1 STM pattern and the LTM pattern being read out from an established category.

� also, when an uncommitted F2 node becomes active for the �rst time, it should be able to

remain active, without being reset, so that it can encode its �rst input exemplar (no bottom

up top down match present).

� a combination of an appropriately chosen ART 2 reset rule and LTM initial values work

together to satisfy both processing requirements.

� ART 2 parameters can be chosen so that learning increases the system's sensitivity to mis-

matches between bottom up and top down patterns.

STM Invariance under Readout of Matched LTM

� prevents readout of a perfectly matched LTM pattern from causing reset by preventing any

change from occurring in the STM patterning at the lower F1 levels.

� extra F1 levels provide enough degrees of computational freedom to

{ both readout top down LTM and normalize the total STM pattern at the top F1 level

{ before this normalized STM pattern can interact with the middle F1 level at which top

down and bottom up information are matched.

� also allows for the compensation for 
uctuations in baseline activity levels! prevents spurious

resets and destabilization of the search and learning processes.

� the 2

3
rule of ART 1 is realized as part of the F1 internal levels.

{ a superset bottom up input pattern cannot recode a subset top down expectation.

Noise Suppression

� a combination of normalization and nonlinear feedback processes within F1 determines a noise

criterion and enables the system to separate noise from signal.

{ contrast enhance the F1 STM pattern and the learned LTM patterns.
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{ degree of contrast enhancement and noise suppression is determined by the degree of

nonlinearity in the feedback signal functions at F1.

� a nonlinear signal function operating on the sum of normalized bottom up and top down signals

also correlates these signals.

{ helps to attenuate the total activation of F1 in response to mismatched patterns, as well

as to contrast enhance and noise suppress bottom up patterns.

Rapid Self-Stabilization

� learning in ART needs to be slow relative to the STM processing rate but no restrictions are

placed on absolute rates.

� ART 2 is capable of stable learning in \fast learning mode"

{ LTM traces change so quickly that they can approach new equilibrium values on every

trial.

Normalization

� achieved by

1. nonspeci�c inhibitory neurons

{ each normalizer uses O(M) connections where M is the number of nodes to be

normalized.

2. shunting on-centre o�-surround network

{ uses O(M2) connections.

Local Computations

� STM and LTM computations use only information available locally and in real-time.

� no assumptions of weight transport (as in back-propagation).

� no assumptions of an a priori input probability distribution (as in simulated annealing).

The 2

3
Rule

� ART 2 implements a weak version of the 2

3
rule { during matching, an F1 node can remain

active only if it receives signi�cant top down input.

{ a node receiving large top down input can remain stored in memory even if bottom up

input to the node is absent on a given trail { it would be partially restored in STM.

{ the relative importance of the feature would decline but not necessarily disappear.

{ a feature consistently absent from most category exemplars would eventually be removed

from the category expectation pattern.

{ this feature thereafter would be treated as noise.
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Recognition, Reinforcement and Recall

� reinforcement (reward and punishment)

{ calibrate whether an action has satis�ed an internal need.

{ can modify the formation of recognition codes and shift attention to focus upon those

codes whose activation promises to satisfy internal needs based upon past experience.

� recall

{ can generate equivalent responses or actions to input events that are classi�ed by di�erent

recognition codes.

Carpenter-Grossberg Experiments

� models of self-organizing biological systems wherein all the ingredients of recognition, rein-

forcement and recall are joined in a single integrated circuit.

� an ART 2 system self-organizes recognition categories in response to the preprocessed inputs,

its categorical choices at the F2 level self-stabilizing through time.

� this system's choices can be used as the �rst level of an ART 1 or another ART 2 architecture

to produce another classifying level F3.

� level F3 can be used as a source of prewired priming inputs to F2.

� after learning these primes, a particular prime can activate a learned F3 ! F2 top down

expectation.

� the prime causes the architecture to pay attention only to expected sources of input informa-

tion.

� the output pathways from level F2 of ART 2 to the postprocessor can learn to recall any spatial

pattern by applying theorems about associative learning.

� the architecture as a whole can stably self-organize an invariant recognition code and an

associative map to an arbitrary format of output patterns.
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