Application of Gauss's Law

 \blacksquare At a point x, the electric field can be found as the charge enclosed, divided by the permittivity of the material ...

caveats (warnings):

- (i) the field must be zero at the other side of the charged region
- (ii) the sign of the field can be found by keeping track of the +x direction and the one-dimensional equivalent of the "outward normal;" however, the best approach is to know the sign of the field from the distribution of charge in the problem
- Example: metal-oxide-silicon structure

Find $E(x = 0^+)$... just inside the silicon

Boundary Condition on E (cont.)

Sketch E(x) from $x = -t_{ox}$ to $x = X_d$

■ Sketch $\phi(x)$ through the structure, given that $\phi(X_d) = 400 \text{ mV}$

Potential and Carrier Concentration in Silicon

■ What is a convenient reference for the electrostatic potential in silicon?

Thermal equilibrium: no external stimulus --> must have:

$$J_p = 0$$
 and $J_n = 0$.

$$\therefore 0 = q n_o \mu_n E + q D_n \frac{dn_o}{dx} = q n_o \mu_n \left(-\frac{d\phi}{dx} \right) + q D_n \frac{dn_o}{dx}$$

$$d\phi = \frac{D_n}{\mu_n} \left(\frac{dn_o}{n_o} \right) = \frac{kT}{q} \left(\frac{dn_o}{n_o} \right) = V_{th} \left(\frac{dn_o}{n_o} \right)$$

where we have used Einstein's relation.

$$\frac{D_n}{\mu_n} = \frac{kT}{q} = V_{th} = 25 \text{ mV at "cool" room temperature to}$$

$$26 \text{ mV at "warm" room temperature}$$

 V_{th} is called the *thermal voltage*.

The Intrinsic Potential Reference

■ By integrating the equation relating potential to the electron concentration from a position x_a to position x, we find that:

$$\phi(x) - \phi(x_a) = V_{th} \ln(\frac{n_o(x)}{n_o(x_a)})$$

We can choose any reference; one convenient choice is to set:

$$\phi(x_a) = 0$$
 when $n_o(x_a) = n_i = 10^{10}$ cm⁻³ at room temperature.

■ Using this reference, the potential in thermal equilibrium can be found, given the electron concentration:

$$\phi = V_{th} \ln(\frac{n_o}{n_i}) = (26\text{mV}) \ln(10) \log\left(\frac{n_o}{10^{10}}\right) = (60\text{mV}) \log\frac{n_o}{10^{10}}$$

Donor concentrations from 10^{13} to 10^{19} cm⁻³ therefore correspond to potentials of (60 mV) x 3 = 180 mV to (60 mV) x 9 = 540 mV (at room temperature)

The 60 mV Rule

The hole concentration can also be related to the potential, by repeating the derivation starting with $J_p = 0$ or by substituting

$$p_o = n_i^2 / n_o$$

into the 60 mV rule for electrons. The result is:

$$\phi = V_{th} \ln(\frac{n_i}{p_o}) = (-26 \text{mV}) \ln(10) \log\left(\frac{p_o}{10^{10}}\right) = (-60 \text{mV}) \log\left(\frac{p_o}{10^{10}}\right)$$

 p_o equilibrium hole concentration (cm⁻³)

pn Junctions

■ ubiquitous IC structure -- pn junctions are everywhere!

■ thermal equilibrium: no hole current, no electron current ... no voltage applied between metal interconnects (could short them together)

Diffusion Currents in Thermal Equilibrium

■ huge gradients in hole and electron concentration --> assume a transition region between - x_{po} and + x_{no}

note: we don't know how wide the transition region is (yet)

Drift and Diffusion in the Transition Region

- $J_{no} = 0$ and $J_{po} = 0$ due to equilibrium
 - --> negative electric field in the transition region is needed ...

where do + and - charges come from?

Answer: the roll-off in electron concentration between x = 0 and x_{no} means that

$$\rho_o(x) = q(-n_o(x) + N_d) > 0$$

since $n_o(x) < N_d$ on the n-side of the transition region

■ On the p-side, the charge density is negative, since the hole concentration rolls off between $x = -x_{po}$ and x = 0.

Qualitative Electrostatics in Equilibrium

■ From the charge density, we can find the electric field and the potential

(c)

Quantitative pn Junction in Thermal Equilibrium

The Depletion Approximation

■ In the bulk regions far away from the junction, we can approximate

$$\rho = 0$$

■ Near the junction, the charge density is non-zero. For example, on the n-side of the junction in the transition region, $0 < x < x_{no}$:

$$\rho = q (p_o + N_d - n_o - N_a) = q (N_d - n_o)$$

since there are no acceptors on this side (N_a = 0) and the hole concentration is negligible --> p_o = 0 (approx.)

The maximum positive value for charge density on the n-side is when there are *no electrons present in equilibrium* -- that is, when the silicon in the transition region is *depleted* of electrons.

For hand calculations, we will assume that

$$\rho = \rho_{max} = q N_d \quad (0 < x < x_{no})$$

$$\rho = -q N_d \quad (-x_p < x < 0)$$

and proceed to find the width of the transition region, which we will rename the *depletion region*. The charge density is assumed to fall off *abruptly* from these values to zero in the bulk regions, where $x < -x_{po}$ and $x > x_{no}$

One more time ...

■ Bulk silicon is *NEUTRAL*, to a good approximation >> region 1 is *bulk*:

$$\rho = q(N_d + p_o - N_a - n_o) \cong 0 \qquad --> \qquad p_o \cong N_a$$

>> region 4 is *bulk*:

$$\rho = q(N_d + p_o - N_a - n_o) \cong 0 \qquad --> \qquad n_o \cong N_d$$

■ Near the junction, the silicon is *DEPLETED* of mobile carriers:

>> region 2 is *depleted*:

$$\rho = q(N_d + p_o - N_a - n_o) \cong -qN_a$$

>> region 3 is *depleted*:

$$\rho = q(N_d + p_o - N_a - n_o) \cong qN_d$$

 x_{no} , x_{po} are not known yet -- use boundary conditions to find them

pn Junction in Thermal Equilibrium: Using the Depletion Approximation

- For detailed calculations, see Section 3.4. Analysis is straightforward, but involved. Use the fact that:
 - > Charge in depletion region must sum to zero (why?)
 - > Electrostatic potential is continuous

Depletion Widths in Thermal Equilibrium

$$x_{po} = \sqrt{\left(\frac{2\varepsilon_s \phi_B}{qN_a}\right) \left(\frac{N_d}{N_d + N_a}\right)}$$

$$x_{no} = \sqrt{\left(\frac{2\varepsilon_s \phi_B}{qN_d}\right) \left(\frac{N_a}{N_d + N_a}\right)}$$

$$X_{do} = x_{no} + x_{po} = \sqrt{\left(\frac{2\varepsilon_s \phi_B}{q}\right)\left(\frac{1}{N_a} + \frac{1}{N_d}\right)}$$

■ Asymmetric junctions: i.e., $N_a >> N_d$ or $N_d >> N_a$. >> most of depletion width is on the side with the *lower* doping, since

$$\frac{1}{N_a} + \frac{1}{N_d} \approx \frac{1}{N_d} \qquad (N_a \gg N_d)$$

$$\frac{1}{N_a} + \frac{1}{N_d} \approx \frac{1}{N_a} \qquad (N_d \gg N_a)$$

>> most IC pn junctions are highly asymmetric

pn Junction under Reverse Bias

■ First, we must understand the *complete* structure of the pn junction-- starting in thermal equilibrium:

- How can $V_D = 0$ and the built-in potential barrier be $\phi_B = 1$ V (approx.)? Answer: look at the complete circuit ... including the potential barriers at the p-type silicon-to-metal (ϕ_{pm}) and the metal-to-n-type silicon (ϕ_{mn}) junctions.
- Kirchhoff's Voltage Law:

$$0 = \phi_{pm} + \phi_B + \phi_{mn}$$

therefore, the built-in voltage is given by:

$$\phi_B = -\phi_{pm} - \phi_{mn}$$