Chapter 4

Field-Effect Transistors

Metal-oxide semiconductor field effect transistor (MOSFET)

and

Junction field-effect transistor (JFET)

4.1 Characteristics of the MOS capacitor

MOS capacitor is essential to MOS transistor operation

Figure 4.1 - MOS capacitor structure on p-type silicon

Accumulation Region

Inversion Region

4.2 Structure of the NMOS transistor

Figure 4.3 - (a) NMOS transistor structure (b) cross section

and (c) circuit symbol

4.3 Qualitative *I-v* behavior of the NMOS transistor

Figure 4.4 - (a) $V_{GS} \ll V_{TN}$ (b) $V_{GS} \ll V_{TN}$ (c) $V_{GS} \gg V_{TN}$

Figure 4.5 - Model for determining i-v characteristics of the NMOS transistor

4.4 Linear region characteristics of the NMOS transistor

The electron charge per unit length at point x

$$Q' = -WC'_{OX}(v_{ox} - V_{TN}) \quad C/cm \quad \text{for} \quad v_{ox} >= V_{TN} \quad (*)$$

where $C_{OX} = \varepsilon_{OX} / T_{OX}$, oxide capacitance per unit area (F/cm²)

> ε_{OX} = oxide permittivity $(F/cm)^{1}$ T_{OX} = oxide thickness (cm).

 V_{ox} represents the voltage across the oxide and is a function of position x in the channel

$$v_{OX} = v_{GS} - v(x)$$

where

v(x) = voltage at any point x in the channel referred to the source

Note that v_{ox} must exceed V_{TN} for an inversion layer to exist, so Q will be zero until $v_{ox} > V_{TN}$. At the source end of the channel $v_{OX} = v_{GS}$, and it decreases to $v_{OS} = v_{GS} - v_{DS}$ at the drain end of the channel.

The electron drift current at any point in the channel is given by the product of the charge per unit length times the velocity v_x

$$i(x) = Q'(x)v_x(x)$$

The charge Q' is represented by Eq.(*) and the velocity V_x of electrons in the channel is determined

by the electron mobility and the transverse electric field in the channel, so

$$i(x) = Q'v_{x} = [-WC''_{OX} (v_{OX} - V_{TN})][-\mu_{n}E_{x}]$$

The transverse electric field is equal to the negative of the spatial derivative of the voltage in the channel

$$E_x = -\frac{dv(x)}{dx}$$

So the current at any point in the channel

$$i(x) = -\mu_n C_{OX}'' W(v_{GS} - v(x) - V_{TN})] \frac{dv(x)}{dx}$$
$$i(x)dx = -\mu_n C_{OX}'' W(v_{GS} - v(x) - V_{TN})]dv(x)$$

Integrating i(x) along the channel, we get

$$i_{DS} = \mu_n C_{OX}^{"} \frac{W}{L} (v_{GS} - V_{TN} - \frac{v_{DS}}{2}) v_{DS}$$

or

$$i_{DS} = K_N' \frac{W}{L} (v_{GS} - V_{TN} - \frac{v_{DS}}{2}) v_{DS}$$

where $K'_{n} = \mu_{n}C''_{ox}$ and $V_{GS} - V_{TN} >= V_{DS} >= 0$

$$i_{DS} = K_N (v_{GS} - V_{TN} - \frac{v_{DS}}{2}) v_{DS}$$
 where $K_n = K_n \frac{W}{L}$

Interpretation of the Linear Region *I-V* **characteristic**

Figure 4.6 - NMOS i-v characteristics in the linear region (V_{SB} = 0)

The resistance of the FET in the linear region near the origin, called the on-resistance *Ron*, is defined as

$$R_{on} = \{\frac{i_{DS}}{v_{DS}} \mid_{v_{DS}=0} \}_{Q=point}^{-1} = \frac{1}{K_n' \frac{W}{L} (V_{GS} - V_{TN})}$$

or

4.4 Saturation of the I-V characteristics

 $\begin{array}{ll} \mbox{Figure 4.7 -} & \mbox{(a) MOSFET in the linear region} \\ & \mbox{(b) MOSFET with channel just pinched off at the drain} \\ & \mbox{(c) Channel pinch off for $v_{DS} > v_{GS} - V_{TN}$ \end{array}$

Figure 4.8 - Inversion layer in the saturation region, also known as the pinchoff region

Since the voltage across the inverted channel is constant, the drain to source current in saturation is

Figure 4.9 - Output characteristics for an NMOS transistor with V_{TN} = 1 V and K_n = 25 x 10^{-6} A/V^2

also constant (independent from V_{DS})

$$i_{DS} = \frac{K_N}{2} \frac{W}{L} (v_{GS} - V_{TN})^2$$
 for $v_{DS} \ge (v_{GS} - V_{TN}) \ge 0$

Figure 4.10 - Output characteristic showing intersection of the linear region and saturation region equations at the pinchoff point

4.6 Channel-length modulation

Figure 4.11 - Output characteristics including the effects of channel length modulation

Figure 4.12 - Channel length modulation

There is an effective reduction of the channel length by increasing V_{DS} in saturation (ΔL increases).

This causes some increase in l_{DS}

$$i_{DS} = \frac{K_n}{2} \frac{W}{L} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$$

where λ is called channel-length modulation parameter

NMOS Transistor mathematical model summary

For all regions

$$K_n = \mu_n C_{ox}^{"} \frac{W}{L} \qquad \qquad i_G = 0 \qquad \qquad i_B = 0$$

Cutoff region:

$$i_{DS} = 0$$
 for $v_{GS} \le V_{TN}$

Linear region:

$$i_{DS} = K_N (v_{GS} - V_{TN} - \frac{v_{DS}}{2}) v_{DS}$$
 for $v_{GS} - V_{TN} \ge v_{DS} \ge 0$

Saturation region:

$$i_{DS} = \frac{K_N}{2} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$$
 for $v_{DS} \ge v_{GS} - V_{TN} \ge 0$

4.7 Transfer characteristics and the depletion-mode MOSFET

Figure 4.13 - Transfer characteristics for enhancement-mode and depletion-mode NMOS transistors

Figure 4.14 - Cross section of a depletion-mode NMOS

4.8 Body effect or substrate sensitivity

$$V_{TN} = V_{TO} + \gamma(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F})$$

Where V_{TO} = zero-substrate-bias value for $V_{TN}(V)$ γ = body-effect parameter \sqrt{V} $2\phi_F$ = surface potential parameter (V)

Figure 4.15 - Threshold variation with source-bulk voltage for a NMOS transistor with V_{TO} = 1 V, $2_{\varphi F}$ = 0.6 V and $_{\gamma}$ = 0.75 \sqrt{V} .

4.9 PMOS transistors

PMOS transistor mathematical model summary For all regions

$$K_n = \mu_n C_{ox}^{"} \frac{W}{L} \qquad \qquad i_G = 0 \qquad \qquad i_B = 0$$

Cutoff region:

$$i_{SD} = 0$$
 for $v_{SG} \le -V_{TP}(v_{GS} \ge V_{TP})$

Linear region:

$$i_{SD} = K_{P}(v_{SG} + V_{TP} - \frac{v_{SD}}{2})v_{SD}$$
 for $v_{SG} + V_{TP} \ge v_{SD} \ge 0$

Saturation region:

$$i_{SD} = \frac{K_{P}}{2} (v_{SG} + V_{TP})^{2} (1 + \lambda v_{SD})$$
 for $v_{SD} \ge v_{SG} + V_{TP} \ge 0$

Figure 4.16 - Cross section of an enhancement-mode PMOS transistor

Figure 4.17 - Output characteristics for a PMOS transistor with V_{TP} = -1 V

Current and voltage relationships in PMOS are like in NMOS except that their polarities are reversed.

MOSFET circuit symbols and model summary

IEEE Standard MOS transistor circuit symbols

(a) NMOS enhancement-mode device

(b) PMOS enhancement-mode device

(c) NMOS depletion-mode device (d) PMOS depletion-mode device

Arrow points in the direction of bulk-channel diodes

(e) Three-terminal NMOS transistor

(f) Three-terminal PMOS transistor

In these symbols arrow points in the direction of the positive current

Mathematical Model Summary

NMOS Transistor model summary

For all regions
$$K_n = \mu_n C_{ox}^{"} \frac{W}{L}$$
 $i_G = 0$ $i_B = 0$

Cutoff region:

$$i_{DS} = 0$$
 for $v_{GS} \le V_{TN}$

Linear region:

$$i_{DS} = K_N (v_{GS} - V_{TN} - \frac{v_{DS}}{2}) v_{DS}$$
 for $v_{GS} - V_{TN} \ge v_{DS} \ge 0$

Saturation region:

$$i_{DS} = \frac{K_N}{2} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS}) \quad \text{for } v_{DS} \ge v_{GS} - V_{TN} \ge 0$$

Threshold voltage:

$$V_{TN} = V_{TO} + \gamma(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F})$$

PMOS transistor mathematical model summary

For all regions

$$K_n = \mu_n C_{ox}^{"} \frac{W}{L} \qquad \qquad i_G = 0 \qquad \qquad i_B = 0$$

Cutoff region:

$$i_{SD} = 0$$
 for $v_{SG} \leq -V_{TP}(v_{GS} \geq V_{TP})$

Linear region:

$$i_{SD} = K_{P}(v_{SG} + V_{TP} - \frac{v_{SD}}{2})v_{SD}$$

for $v_{SG} + V_{TP} \ge v_{SD} \ge 0$

Saturation region:

$$i_{SD} = \frac{K_P}{2} (v_{SG} + V_{TP})^2 (1 + \lambda v_{SD})$$
 for $v_{SD} \ge v_{SG} + V_{TP} \ge 0$

Threshold voltage:

$$V_{TP} = V_{TO} - \gamma(\sqrt{v_{BS} + 2\phi_F} - \sqrt{2\phi_F})$$

Figure 4.19 - NMOS and PMOS transistor circuit symbols

Table 4.1 - Categories of MOS Transistors

	NMOS Device	PMOS Device
Enhancement-mode	$V_{\rm TN} > 0$	$V_{TP} < 0$
Depletion-mode	$V_{TN} \ll 0$	V _{TP} >=0