Three Parametric Approaches to Classification

1) **Discriminant Functions**: construct \(f : X \rightarrow T \) that directly assigns a vector \(x \) to a specific class \(C_k \).
 - Inference and decision combined into a single learning problem.
 - **Linear Discriminant**: the decision surface is a hyperplane in \(X \):
 - Fisher’s Linear Discriminant
 - Perceptron
 - Support Vector Machines
Three Parametric Approaches to Classification

2) **Probabilistic Discriminative Models**: directly model the posterior class probabilities $p(C_k \mid x)$.
 - Inference and decision are separate.
 - Less data needed to estimate $p(C_k \mid x)$ than $p(x \mid C_k)$.
 - Can accommodate many overlapping features.
 - Logistic Regression
 - Conditional Random Fields
Three Parametric Approaches to Classification

3) Probabilistic Generative Models:
 - Model class-conditional $p(x \mid C_k)$ as well as the priors $p(C_k)$, then use Bayes’s theorem to find $p(C_k \mid x)$.
 - or model $p(x,C_k)$ directly, then marginalize to obtain the posterior probabilities $p(C_k \mid x)$.
 - Inference and decision are separate.
 - Can use $p(x)$ for outlier or novelty detection.
 - Need to model dependencies between features.
 - Naïve Bayes.
 - Hidden Markov Models.
Unbiased Learning of Generative Models

• Let $\mathbf{x} = [x_1, x_2, \ldots, x_M]^T$ be a feature vector with M features.

• Assume Boolean features:
 \Rightarrow distribution $p(\mathbf{x} | C_k)$ is completely specified by a table of 2^M probabilities, of which $2^M - 1$ are independent.

• Assume binary classification:
 \Rightarrow need to estimate $2^M - 1$ parameters for each class
 \Rightarrow total of $2(2^M - 1)$ independent parameters to estimate.
 - 30 features \Rightarrow more than 2 billion parameters to estimate!
The Naïve Bayes Model

• Assume features are conditionally independent given the target output:

$$\Rightarrow p(x \mid C_k) = \prod_{i=1}^{M} p(x_i \mid C_k)$$

• Assume binary classification & features:
 $$\Rightarrow$$ need to estimate only $2M$ parameters, a lot less than $2(2^M - 1)$.
The Naïve Bayes Model: Inference

- **Posterior distribution:**
 \[p(C_k | x) = \frac{p(x | C_k) p(C_k)}{p(x)} \]
 \[= \frac{p(C_k) \prod_j p(x_j | C_k)}{p(x)} \]

- **Inference** \(\equiv \) find \(C_* \) to minimize missclassification rate:
 \[C_* = \arg \max_{C_k} p(C_k | x) \]
 \[= \arg \max_{C_k} p(C_k) \prod_j p(x_j | C_k) \]
The Naïve Bayes Model: Training

• Training \(\equiv\) estimate parameters \(p(x_i | C_k)\) and \(p(C_k)\).

• Maximum Likelihood (ML) estimation:

\[
\hat{p}(x_i = v | t = C_k) = \frac{\sum_{(x,t) \in D} \delta_v(x_i) \delta_{C_k}(t)}{\sum_{(x,t) \in D} \delta_{C_k}(t)}
\]

\[
\hat{p}(t = C_k) = \frac{\sum_{(x,t) \in D} \delta_{C_k}(t)}{|D|}
\]

training examples in which \(x_i = v\) and \(t = C_k\)

training examples in which \(t = C_k\)
The Naïve Bayes Model: Training

- **Maximum A-Posteriori (MAP) estimation:**
 - assume a Dirichlet prior over the NB parameters, with equal-valued parameters.
 - assume \(x_i \) can take \(V \) values, label \(t \) can take \(K \) values.

\[
\hat{p}(x_i = v \mid t = C_k) = \frac{\sum_{(x,t) \in D} \delta_v(x_i) \delta_{C_k}(t) + l}{\sum_{(x,t) \in D} \delta_{C_k}(t) + lV}
\]

\[
\hat{p}(t = C_k) = \frac{\sum_{(x,t) \in D} \delta_{C_k}(t) + l}{|D| + lK}
\]

\(l = 1 \Rightarrow \text{Laplace smoothing} \)

⇔ \(lV \) “hallucinated” examples spread evenly over all \(V \) values of \(x_i \).
Text Categorization with Naïve Bayes

- Text categorization problems:
 - Spam filtering.
 - Targeted advertisement in Gmail.
 - Classification in multiple categories on news websites.

- Representation as one feature per word:
 - Each document is a very high dimensional feature vector.

- Most words are rare:
 - Zipf’s law and heavy tail distribution.
 - Feature vectors are sparse.
Text Categorization with Naïve Bayes

• Generative model of documents:
 1) Generate document category by sampling from \(p(C_k) \).
 2) Generate a document as a bag of words by repeatedly sampling with replacement from a vocabulary \(V = \{w_1, w_2, \ldots, w_{|V|}\} \) based on \(p(w_i \mid C_k) \).

• Inference with Naïve Bayes:
 – Input:
 • Document \(x \) with \(n \) words \(v_1, v_2, \ldots, v_n \).
 – Output:
 • Category \(C_\star = \arg \max_{C_k} p(C_k) \prod_{j=1}^{n} p(v_j \mid C_k) \)
Text Categorization with Naïve Bayes

- **Training** with Naïve Bayes:
 - **Input:**
 - Dataset of training documents D with vocabulary V.
 - **Output:**
 - Parameters $p(C_k)$ and $p(w_i \mid C_k)$.

1. **for each** category C_k:
2. let D_k be the subset of documents in category C_k
3. set $p(C_k) = |D_k| / |D|$
4. let n_k be the total number of words in D_k
5. **for** each word $w_i \in V$:
6. let n_{ki} be the number of occurrences of w_i in D_k
7. set $p(w_i \mid C_k) = (n_{ki} + 1) / (n_k + |V|)$
Medical Diagnosis with Naïve Bayes

- Diagnose a disease \(T = \{Yes, No\} \), using information from various medical tests.

Medical tests may result in continuous values ⇒ need Naïve Bayes to work with continuous features.

\[
p(x \mid C_k) = \prod_{i=1}^{M} p(x_i \mid C_k)
\]
Naïve Bayes with Continuous Features

- Assume $p(x_i | C_k)$ are Gaussian distributions $N(\mu_{ik}, \sigma_{ik})$.

- **Training:** use ML or MAP criteria to estimate μ_{ik}, σ_{ik}:

\[
\hat{\mu}_{ik} = \frac{\sum_{(x,t) \in D} x_i \delta_{C_k}(t)}{\sum_{(x,t) \in D} \delta_{C_k}(t)} \quad \hat{\sigma}_{ik}^2 = \frac{\sum_{(x,t) \in D} (x_i - \hat{\mu}_{ik})^2 \delta_{C_k}(t)}{\sum_{(x,t) \in D} \delta_{C_k}(t)}
\]

- **Inference:**

\[
C^* = \arg \max_{C_k} p(C_k | x) = \arg \max_{C_k} p(C_k) \prod_{i} p(x_i | C_k)
\]
Numerical Issues

• Multiplying lots of probabilities may result in underflow:
 – especially when many attributes (e.g. text categorization).

• Compute everything in log space:

\[
p(x \mid C_k) = \prod_{i=1}^{M} p(x_i \mid C_k) \iff \ln p(x \mid C_k) = \sum_{i=1}^{M} \ln p(x_i \mid C_k)
\]

\[
C_* = \arg \max_{C_k} p(C_k \mid x) \iff C_* = \arg \max_{C_k} \ln p(C_k \mid x)
\]

\[
= \arg \max_{C_k} \left\{ \ln p(C_k) + \ln p(x \mid C_k) \right\}
\]
Naïve Bayes

• Often has good performance, despite strong independence assumptions:
 – quite competitive with other classification methods on UCI datasets.

• It does not produce accurate probability estimates when independence assumptions are violated:
 – the estimates are still useful for finding max-probability class.

• Does not focus on completely fitting the data ⇒ resilient to noise.
Probabilistic Generative Models: Binary Classification ($K = 2$)

- Model class-conditional $p(x | C_1), p(x | C_2)$ as well as the priors $p(C_1), p(C_2)$, then use Bayes’s theorem to find $p(C_1 | x), p(C_2 | x)$:

$$p(C_1 | x) = \frac{p(x | C_1)p(C_1)}{p(x | C_1)p(C_1) + p(x | C_2)p(C_2)} = \sigma(a(x))$$

where $\sigma(a) = \frac{1}{1 + \exp(-a)}$

$$a(x) = \ln \frac{p(x | C_1)p(C_1)}{p(x | C_2)p(C_2)} = \ln \frac{p(C_1 | x)}{p(C_2 | x)}$$
Probabilistic Generative Models: Binary Classification (K = 2)

- If $a(x)$ is a linear function of $x \Rightarrow p(C_1 | x)$ is a generalized linear model:

$$p(C_1 | x) = \frac{1}{1 + \exp(-a(x))} = \sigma(a(x)) = \sigma(\lambda^T x)$$

$\sigma(a)$ is a squashing function
The Naïve Bayes Model

• Assume binary features \(x_i \in \{0,1\} \):

\[
\Rightarrow p(x \mid C_k) = \prod_{i=1}^{M} p(x_i \mid C_k)
\]

\[
= \prod_{i=1}^{M} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1-x_i}, \text{ where } \mu_{ki} = p(x_i = 1 \mid C_k)
\]

\[
\Rightarrow p(C_k \mid x) = \frac{\exp(a_k(x))}{\sum_j \exp(a_j(x))}
\]

, where \(a_k(x) = \sum_{i=1}^{M} \{x_i \ln \mu_{ki} + (1 - x_i) \ln(1 - \mu_{ki})\} + \ln p(C_k) \)

\[
= \lambda_k^T x \quad \Rightarrow \text{NB is a generalized linear model.}
\]
Probabilistic Generative Models: Multiple Classes ($K \geq 2$)

- Model class-conditional $p(x \mid C_k)$ as well as the priors $p(C_k)$, then use Bayes’s theorem to find $p(C_k \mid x)$:

$$p(C_k \mid x) = \frac{p(x \mid C_k)p(C_k)}{\sum_j p(x \mid C_j)p(C_j)}$$

$$= \frac{\exp(a_k(x))}{\sum_j \exp(a_j(x))}$$

where $a_k(x) = \ln p(x \mid C_k)p(C_k)$

- If $a_k(x) = \lambda_k^T x \Rightarrow p(C_k \mid x)$ is a generalized linear model.