Decision Tree Learning

- Target output is discrete (i.e. binary, or multiple classes).
 - PlayTennis ∈ \{Yes, No\}.

- Features have finite cardinality (i.e. nominal features).
 - Outlook ∈ \{Sunny, Overcast, Rain\}.
 - Temperature ∈ \{Cool, Mild, Hot\}.
 - Humidity ∈ \{Normal, High\}.
 - Wind ∈ \{Weak, Strong\}.

- Target model requires disjunctive description in terms of features ⇒ use Decision Trees.
Decision Trees

Decision Tree \iff Disjunction of conjunctions of constraints on the attribute values of instances.

$$\begin{align*}
\text{Outlook} & \iff \text{Humidity} = \text{Normal} \\
& \lor \text{Outlook} = \text{Overcast} \\
& \lor \text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak}
\end{align*}$$
Decision Tree Learning

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cold</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
There may be many decision trees consistent with a set of training examples:

- Q: Which decision tree should be selected?
- A: Prefer shorter trees over larger trees.

⇒ the ID3 Algorithm for learning decision trees.

Occam’s razor:
Prefer the simplest hypothesis that fits the data.
The ID3 Algorithm

• At each node:
 – Select the feature that results in the largest *expected reduction in entropy* for the target label.
 ⇔ select the feature with largest *information gain*.

• \(D \) = the training data
• \(T \) = the random variable corresponding to PlayTennis.

\[
p(T = \text{yes}) = \frac{9}{14} \quad \quad p(T = \text{no}) = \frac{5}{14}
\]

\[\Rightarrow H(T; D) = - \sum_i p(x_i) \log p(x_i) \approx 0.940\]
The ID3 Algorithm

• Suppose we split on feature X that has k values $\{x_1, \ldots, x_k\}$
• Let D_i be the set of instances where $X = x_i$.
• The expected reduction in entropy is:

$$IG(X; D) = H(T; D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} H(T; D_i)$$

• Choose the feature that maximizes the information gain:

$$\hat{X} = \arg \max_X IG(X; D)$$
The ID3 Algorithm

\[D = \{9^+,5^-\} \]
\[H(T;D) = 0.940 \]

- **风**

- **弱**
 \[D_1 = \{6^+,2^-\} \]
 \[H(T;D_1) = 0.811 \]

- **强**
 \[D_2 = \{3^+,3^-\} \]
 \[H(T;D_2) = 1.00 \]

\[IG(\text{Wind};D) = 0.940 - \frac{8}{14} \times 0.811 - \frac{6}{14} \times 1.00 = 0.048 \]
The ID3 Algorithm

\[IG(\text{Wind}; D) = 0.048 \]
\[IG(\text{Humidity}; D) = 0.151 \]
\[IG(\text{Temperature}; D) = 0.029 \]
\[IG(\text{Outlook}; D) = 0.246 \]

\[\Rightarrow \text{select } X = \text{Outlook} \text{ to split at the root.} \]
The ID3 Algorithm

- Repeatedly apply the Information Gain criterion to select the best attribute for each nonterminal node.
 - set D to the training examples for that node.
 - use only remaining attributes.

\[D = \{9^+,5^-\} \]
The ID3 Algorithm

Algorithm ID3(Training data D, Features F):

1. **if** all examples in D have the same label:
 - **return** a leaf node with that label
2. **let** $X \in F$ be the feature with the largest information gain
3. **let** T be a tree root labeled with feature X.
4. **let** $D_1, D_2, ..., D_k$ be the partition produced by splitting D on feature X
5. **for each** $D_i \in \{D_1, D_2, ..., D_k\}$:
 - **let** $T_i = \text{ID3}(D_i, F - \{X\})$
 - add T_i as a new branch of T
6. **return** T
Overfitting

- ID3 learns a tree that classifies the training data perfectly.
- The learned tree may not lead to the tree with the best generalization performance on unseen (test) data.

Overfitting

1. Maximum number of leaf nodes is \(N = \# \text{ training examples} \) \(\Rightarrow \) no generalization outside of the training data.

2. When small number of examples are associated with leaf nodes:
 - some attribute that is unrelated to the actual target function happens to partition the examples very well.

3. When training examples contain random noise:
 - consider adding (false) negative example:

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>Sunny</td>
<td>Hot</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Overfitting

Lecture 05

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>Sunny</td>
<td>Hot</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Decision Tree

- **Outlook**
 - Sunny
 - Overcast
 - Rain

- **Humidity**
 - High
 - Normal

- **Wind**
 - Strong
 - Weak

- PlayTennis:
 - No
 - Yes

```
{+D_9, +D_{11}, -D_{15}}
```
Methods for Reducing Overfitting

- Two types of methods:
 1) Stop growing the tree before it perfectly classifies the training data.
 2) Allow the tree to overfit the data, then prune the tree.
 3) Use ensembles of trees: bagged trees & random forests.

1. Criteria for determining the right size of the tree:
 - Use a validation set to evaluate utility of pruning nodes.
 - Use a statistical test (χ^2) to determine whether expanding a particular node is likely to produce improvement over entire instance distribution.
 - Minimal Description Length (MDL): determine if additional nodes leads to less complex hypothesis than just remembering any exceptions that result from pruning.
2. Reduced Error Pruning

1. grow a complete tree from the training data
2. while accuracy on validation set is non-decreasing:
3. for each internal node in the tree:
4. temporarily prune the subtree and replace it with a leaf labeled with the majority class
5. measure the accuracy of the pruned tree on validation set
6. permanently prune the node that results in greatest accuracy.

⇒ leaf nodes created due to chance regularities in training data are likely to be pruned.

• Drawback: “wastes” validation dataset, instead of using it for training.

[Quinlan, 1987]
2. Reduced Error Pruning

[Quinlan, 1987]
3. Bagged Decision Trees

- Training set has N examples, each example has K features.

1. for t = 1 to T:
2. draw n < N samples with replacement.
3. train a decision tree D_t on the n samples.
4. construct final classifier by majority voting over trees D_t.
 - for regression, average predictions of trees D_t.

Lecture 05
3. Random Forests

- Training set has \(N \) examples, each example has \(K \) features.

1. for \(t = 1 \) to \(T \):
2. draw \(n < N \) samples with replacement.
3. sample \(k < K \) features at random.
4. train a decision tree \(D_t \) on the \(n \) samples and \(k \) features.
5. construct final classifier by majority voting over trees \(D_t \).
 - for regression, average predictions of trees \(D_t \).