Introduction

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
What is (Human) Learning?

• Merriam-Webster:
 – *learn* = to acquire knowledge, understanding, or skill … by study, instruction, or *experience*.

• Why do we learn?
 – to *improve performance* on a given *task*.

• What (tasks) do we learn:
 1. categorize email, recognize faces, diagnose diseases, translate, …
 2. clustering (fish, insects, birds, mice, humans), summarization, sound source separation, …
 3. walk, play backgammon, ride bikes, drive cars, fly helicopters, …
What is Machine Learning?

- **Machine Learning** = constructing computer programs that *learn from experience* to perform well on a given task.
 - **Supervised Learning** i.e. discover patterns from labeled examples that enable predictions on (previously unseen) unlabeled examples.
ML is Meta-Programming

• An ML model (e.g. a neural network) is a computer program:
 – We do not want to explicitly program (model) the computer for each particular task.
 – Use a general ML algorithm and task-specific data to automatically create the Program, i.e. the Model, that solves the task.

⇒ An ML algorithm (e.g. gradient descent) is a meta-program.
Example

\[M_1: x \text{ is Red } \Rightarrow x \in C_1 \]
\[M_2: x \text{ is a Square or } x \text{ is a Diamond } \Rightarrow x \in C_1 \]
\[M_3: x \text{ is Red and } x \text{ is a Quadrilateral } \Rightarrow x \in C_1 \]

Class \(C_1 \)

Class \(C_2 \)
Occam’s Razor

William of Occam (1288 – 1348)

- English Franciscan friar, theologian and philosopher.

- “Entia non sunt multiplicanda praeter necessitatem”
 - Entities must not be multiplied beyond necessity.

i.e. Do not make things needlessly complicated.
i.e. Prefer the simplest hypothesis that fits the data.
ML Objective

• Find a model M that is *simple* + that *fits the training data*.

\[\hat{M} = \arg\min_M \text{Complexity}(M) + \text{Error}(M, \text{Data}) \]

• **Inductive hypothesis**: Models that perform well on training examples are expected to do well on test (unseen) examples.

• **Occam’s Razor**: Simpler models are expected to do better than complex models on test examples (assuming similar training performance).
Example

M_1: x is Red $\Rightarrow x \in C_1$

M_2: x is a Square or x is a Diamond $\Rightarrow x \in C_1$

M_3: x is Red and x is a Quadrilateral $\Rightarrow x \in C_1$
Feature Vectors

<table>
<thead>
<tr>
<th>Features</th>
<th>$\varphi(x_1)$</th>
<th>$\varphi(x_2)$</th>
<th>$\varphi(x_3)$</th>
<th>$\varphi(x_4)$</th>
<th>$\varphi(x_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\varphi_1)) Red?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((\varphi_2)) Quad?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>((\varphi_3)) Square?</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((\varphi_4)) Diamond?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y) Label</td>
<td>$y_1=+1$</td>
<td>$y_2=+1$</td>
<td>$y_3=-1$</td>
<td>$y_4=-1$</td>
<td>$y_5=-1$</td>
</tr>
</tbody>
</table>

Class C_1

Class C_2
Learning with Labeled Feature Vectors

<table>
<thead>
<tr>
<th>Features</th>
<th>(\phi(x_1))</th>
<th>(\phi(x_2))</th>
<th>(\phi(x_3))</th>
<th>(\phi(x_4))</th>
<th>(\phi(x_5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\phi_1))</td>
<td>Red?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((\phi_2))</td>
<td>Quad?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>((\phi_3))</td>
<td>Square?</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((\phi_4))</td>
<td>Diamond?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y) Label</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y_1 = +1)</td>
<td></td>
<td>(y_2 = +1)</td>
<td>(y_3 = -1)</td>
<td>(y_4 = -1)</td>
<td>(y_5 = -1)</td>
</tr>
</tbody>
</table>

\(\phi(x_1) = [1, 1, 1, 0]^T \) \(\phi(x_2) = [1, 1, 0, 1]^T \) \(\phi(x_3) = [0, 0, 0, 0]^T \) ...

\(y_1 = +1 \) \(y_2 = +1 \) \(y_3 = -1 \)

Learning = finding parameters \(w = [w_1, w_2, w_3, w_4]^T \) and \(\tau \) such that:
- \(w^T \phi(x_i) \geq \tau \), if \(y_i = +1 \)
- \(w^T \phi(x_i) < \tau \), if \(y_i = -1 \)

where \(w^T \phi(x) = w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x) + w_4 \phi_4(x) \)
Model M_1: x_i is Red $\Rightarrow y_i = +1$

Red? Quad? Square? Diamond?

<table>
<thead>
<tr>
<th>$\phi(x_1)$</th>
<th>label $y_1 = +1$</th>
<th>$\Rightarrow w^T\phi(x_1) = 1 \geq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1, 1, 1, 0]^T$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi(x_2) = [1, 1, 0, 1]^T$</td>
<td>label $y_2 = +1$</td>
<td>$\Rightarrow w^T\phi(x_2) = 1 \geq 1$</td>
</tr>
<tr>
<td>$\phi(x_3) = [0, 0, 0, 0]^T$</td>
<td>label $y_3 = -1$</td>
<td>$\Rightarrow w^T\phi(x_3) = 0 < 1$</td>
</tr>
<tr>
<td>$\phi(x_4) = [0, 1, 0, 0]^T$</td>
<td>label $y_3 = -1$</td>
<td>$\Rightarrow w^T\phi(x_4) = 0 < 1$</td>
</tr>
<tr>
<td>$\phi(x_5) = [0, 0, 0, 0]^T$</td>
<td>label $y_3 = -1$</td>
<td>$\Rightarrow w^T\phi(x_5) = 0 < 1$</td>
</tr>
</tbody>
</table>

$w = [1, 0, 0, 0]^T$ $\Rightarrow M_1$ error is 0%

Learning = finding parameters $w = [w_1, w_2, w_3, w_4]^T$ such that ($\tau = 1$):
- $w^T\phi(x_i) \geq 1$, if $y_i = +1$
- $w^T\phi(x_i) < 1$, if $y_i = -1$

where $w^T\phi(x) = w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x) + w_4\phi_4(x)$
M₂: \(x_i \) is Square or Diamond \(\Rightarrow y_i = +1 \)

\[\begin{align*}
\phi(x_1) &= [1, 1, 1, 0]^T \quad \text{label } y_1 = +1 \quad \Rightarrow w^T \phi(x_1) = 1 \geq 1 \\
\phi(x_2) &= [1, 1, 0, 1]^T \quad \text{label } y_2 = +1 \quad \Rightarrow w^T \phi(x_2) = 1 \geq 1 \\
\phi(x_3) &= [0, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \Rightarrow w^T \phi(x_3) = 0 < 1 \\
\phi(x_4) &= [0, 1, 0, 0]^T \quad \text{label } y_3 = -1 \quad \Rightarrow w^T \phi(x_4) = 0 < 1 \\
\phi(x_5) &= [0, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \Rightarrow w^T \phi(x_5) = 0 < 1
\end{align*} \]

\[w = [0, 0, 1, 1]^T \quad \Rightarrow M₂ \text{ error is 0\%} \]

Learning = finding parameters \(w = [w_1, w_2, w_3, w_4]^T \) such that (\(\tau = 1 \)):
- \(w^T \phi(x_i) \geq 1 \), if \(y_i = +1 \)
- \(w^T \phi(x_i) < 1 \), if \(y_i = -1 \)

where \(w^T \phi(x) = w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x) + w_4 \phi_4(x) \)
Linear Discriminant Functions: Two classes \((K = 2)\)

- Use a linear function of the input vector:
 \[h(x) = w^T \varphi(x) + w_0 \]

- Decision:
 \[x \in C_1 \text{ if } h(x) \geq 0, \text{ otherwise } x \in C_2. \]
 \[\Rightarrow \text{decision boundary is hyperplane } h(x) = 0. \]

- Properties:
 - \(w\) is orthogonal to vectors lying within the decision surface.
 - \(w_0\) controls the location of the decision hyperplane.
Geometric Interpretation

\[h > 0 \]
\[h = 0 \]
\[h < 0 \]

\[x_1 \]
\[x_2 \]
The Perceptron Algorithm: Two Classes

\[t_n \in \{+1, -1\} \]

1. **initialize** parameters \(w = 0 \)
2. **for** \(n = 1 \ldots N \)
3. \(h_n = \text{sgn}(w^T x_n) \)
4. **if** \(h_n \neq t_n \) **then**
5. \(w = w + t_n x_n \)

Repeat:
- a) until convergence.
- b) for a number of epochs \(E \).

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
- see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].
Classifiers & Margin
The Perceptron Algorithm: Two Classes

1. **initialize** parameters \(w = 0 \)
2. **for** \(n = 1 \) \(\ldots \) \(N \)
3. \(h_n = sgn(w^T x_n) \)
4. **if** \(h_n \neq t_n \) **then**
5. \(w = w + t_n x_n \)

Loop invariant: \(w \) is a weighted sum of training vectors:

\[
w = \sum_n \alpha_n t_n x_n \quad \Rightarrow \quad w^T x = \sum_n \alpha_n t_n x_n^T x
\]

Repeat:
- a) until convergence.
- b) for a number of epochs \(E \).
Classifiers & Margin

- Which classifier has the smallest generalization error?
 - The one that maximizes the margin [Computational Learning Theory]
- **margin** = the distance between the decision boundary and the closest sample.
M₁ or M₂?

• Model M₁: *xᵢ is Red* => *yᵢ = +1*
 – *w⁽¹⁾ = [1, 0, 0, 0]ᵀ*
 – *Error = 0%*

• Model M₂: *xᵢ is Square or Diamond* => *yᵢ = +1*
 – *w⁽²⁾ = [0, 0, 1, 1]ᵀ*
 – *Error = 0%*

• Which one should we choose?
 – Which one is expected to perform better on unseen (new) examples?
ML Objective

- Find a model \(w \) that is *simple* and that fits the training data.

\[
\hat{w} = \arg\min_w \text{Complexity}(w) + \text{Error}(w, Data)
\]
M₁ or M₂?

• Model M₁: \(x_i \) is Red \(\Rightarrow \) \(y_i = +1 \)
 – \(w^{(1)} = [1, 0, 0, 0]^T \)
 – Error = 0%

• Model M₂: \(x_i \) is Square or Diamond \(\Rightarrow \) \(y_i = +1 \)
 – \(w^{(2)} = [0, 0, 1, 1]^T \)
 – Error = 0%

\[\hat{w} = \text{arg min}_w \text{ Complexity}(w) + \text{Error}(w, Data) \]

\[\text{Complexity}(w) = ? \]

\[||w||_0 \text{ i.e. } \# \text{ non-zero values} \]

\[||w||_1 \text{ i.e. sum of absolute values} \]

\[||w||_2 \text{ i.e sum of squared values} \]
ML Objectives

• Find a model \mathbf{w} that is simple and that fits the training data.

\[
\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \text{Complexity}(\mathbf{w}) + \text{Error}(\mathbf{w}, \text{Data})
\]

Ridge Regression: \[
\arg\min_{\mathbf{w}} \frac{\lambda}{2} \| \mathbf{w} \|^2 + \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}) - t_n \}^2
\]

Logistic Regression: \[
\arg\min_{\mathbf{w}} \frac{\alpha}{2} \| \mathbf{w} \|^2 - \sum_{n=1}^{N} \ln p(t_n | x_n)
\]
Support Vector Machines:

$$\arg\min_w \frac{1}{2}\|w\|^2 + C \sum_{n=1}^{N} \xi_n$$

subject to:

$$t_n (w^T \varphi(x_n) + b) \geq 1 - \xi_n, \quad \forall n \in \{1, \ldots, N\}$$

$$\xi_n \geq 0$$

Upper bound on the number of misclassified training examples
ML Concepts & Notation

• A (labeled) example \((x, t)\) consists of:
 – *Instance / observation / raw feature* vector \(x\).
 – *Label* \(t\).

• Examples:
 1. Digit recognition:
 - \(\text{instance } x = ? \)
 - \(\text{label } t = ? \)

 2. Language modelling:
 - “machine is a hot topic in AI”
 - \(\text{instance } x = ? \)
 - \(\text{label } t = ? \)
Often, a raw observation \(x \) is pre-processed and further transformed into a feature vector \(\varphi(x) = [\varphi_1(x), \varphi_1(x), \ldots, \varphi_K(x)]^T \).

Where do the features \(\varphi_k \) come from?

- Feature engineering, e.g. in polynomial curve fitting:
 - manual, can be time consuming (e.g. SIFT).
- (Unsupervised) feature learning, e.g. in modern computer vision
 - automatic, used in deep learning models.
ML Concepts & Notation

• A **training dataset** is a set of (training) examples \((x_1,t_1), (x_2,t_2), \ldots, (x_N,t_N)\):
 – The **data matrix** \(X\) contains all instance vectors \(x_1, x_2, \ldots, x_N\) row-wise.
 – The label vector \(t = [t_1, t_2, \ldots, t_N]^T\).

• A **test dataset** is a set of (test) examples \((x_{N+1},t_{N+1}), \ldots, (x_{N+M},t_{N+M})\):
 – Must be new/unseen/different from the training examples!
ML Concepts & Notation

• There is a function f that maps an instance x to its label $t = f(x)$.
 – f is unknown / not given.
 – But we observe samples from f: $(x_1, t_1), (x_2, t_2), \ldots, (x_N, t_N)$.

• Learning means finding a model h that maps an instance x to a label $h(x) \approx f(x)$, i.e. close to the true label of x.
 – Machine learning = finding a model h that approximates well the unknown function f.
 – Machine learning = function approximation!
ML Concepts & Notation

- Machine learning is **inductive**:
 - **Inductive hypothesis**: if a model performs well on training examples, it is expected to also perform well on unseen (test) examples.

- The **model** y is often specified through a set of parameters \mathbf{w}:
 - \mathbf{x} is mapped by the model to $h(\mathbf{x}, \mathbf{w})$.

- The **objective function** $J(\mathbf{w})$ captures how poorly the model does on the training dataset:
 - Want to find $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w})$
 - Machine learning = **optimization**!
Fitting vs. Generalization

- **Fitting** performance = how well the model performs on training examples.

- **Generalization** performance = how well the model performs on unseen (test) examples.

- We are interested in **Generalization**:
 - Prefer finding patterns to memorizing examples!
 - **Overfitting**:
 - **Underfitting**:
 - **Regularization**:
Regularization = Any Method that Alleviates Overfitting

- **Parameter norm penalties** (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- **Dropout**.
- Ensembles.
- Semi-supervised learning.
- **Early stopping**.
- Noise robustness.
- Sparse representations.
- Adversarial training.
Supervised Learning

Training

Training Examples
\((x_k, t_k)\)

Learning Algorithm

Model \(h\)

Testing

Model \(h\)

Test Examples
\((x, t)\)

Generalization Performance
Features

- Learning = finding parameters $w = [w_1, w_2, w_3, w_4]$ and τ such that:
 $w^T \varphi(x_i) \geq \tau$, if $y_i = +1$
 $w^T \varphi(x_i) < \tau$, if $y_i = -1$

where $w^T \varphi(x) = w_1 \times \varphi_1(x) + w_2 \times \varphi_2(x) + w_3 \times \varphi_3(x) + w_4 \times \varphi_4(x)$

Where do these features come from?
Object Recognition: Cats
Pixels as Features?

\[\phi(x) = [25, 63, 125, 32, 84, 257, \ldots, 13, 27, 39, 8, 213, 107, 54, 73, \ldots, 91, 67, 59, 72, 33, 112, 54, 35, \ldots, 9, 18, 37, 18, 142, 162, 54, 53, \ldots, 28, 93, 44, 69, 85, 68, 54, 87, \ldots, 11, 117, 59, 117, 210, 177, 54, 72, \ldots]^T \]

- Learning = finding parameters \(\mathbf{w} = [w_1, w_2, w_3, \ldots w_k]^T \) such that:
 \[w^T \phi(x_i) \geq \tau, \text{ if } y_i = +1 \text{ (cat)} \]
 \[w^T \phi(x_i) < \tau, \text{ if } y_i = -1 \text{ (other)} \]

where \(\mathbf{w}^T \phi(x) = w_1 \times \phi_1(x) + w_2 \times \phi_2(x) + w_3 \times \phi_3(x) + \ldots w_k \times \phi_k(x) \)

Poor recognition accuracy!
Often, a raw observation x is pre-processed and further transformed into a feature vector $\phi(x) = [\phi_1(x), \phi_1(x), \ldots, \phi_K(x)]^T$.

- Where do the features ϕ_k come from?
 - Feature engineering, e.g. in polynomial curve fitting:
 - manual, can be time consuming (e.g. SIFT).
 - (Unsupervised) feature learning, e.g. in modern computer vision
 - automatic, used in deep learning models.
Machine Learning vs. Deep Learning

\[\varphi(x) \]

\[h(x, w) \]

\[\varphi_1(x) \]

\[\varphi_2(x) \]

\[\ldots \]

\[\varphi_K(x) \]

\[h(\varphi_1(x), w) \]

\[h(\varphi_2(x), w) \]

\[h(\varphi_K(x), w) \]
What is Machine Learning?

- **Machine Learning** = constructing computer programs that automatically improve with experience:
 - **Supervised Learning** i.e. learning from labeled examples:
 - Classification
 - Regression
 - **Unsupervised Learning** i.e. learning from unlabeled examples:
 - Clustering.
 - Dimensionality reduction (visualization).
 - Density estimation.
 - **Reinforcement Learning** i.e. learning with delayed feedback.
Supervised Learning

• Task = learn a function \(f : X \rightarrow T \) that maps input instances \(x \in X \) to output targets \(t \in T \):

 - **Classification**:
 • The output \(t \in T \) is one of a finite set of discrete categories.

 - **Regression**:
 • The output \(t \in T \) is continuous, or has a continuous component.

• Supervision = set of training examples:

 \((x_1, t_1), (x_2, t_2), \ldots, (x_n, t_n) \)
Classification vs. Regression
Classification: Junk Email Filtering

[*Sahami, Dumais & Heckerman, AAAI’98*]

Email filtering:

- Provide emails labeled as \{*Spam, Ham*\}.
- Train *Naïve Bayes* model to discriminate between the two.

From: Tammy Jordan
jordant@oak.cats.ohiou.edu
Subject: Spring 2015 Course

CS690: Machine Learning

Instructor: Razvan Bunescu
Email: bunescu@ohio.edu
Time and Location: Tue, Thu 9:00 AM, ARC 101
Website: http://ace.cs.ohio.edu/~razvan/courses/ml6830

Course description:
Machine Learning is concerned with the design and analysis of algorithms that enable computers to automatically find patterns in the data. This introductory course will give an overview …

From: UK National Lottery
edreyes@uknational.co.uk
Subject: Award Winning Notice

UK NATIONAL LOTTERY. GOVERNMENT ACCREDITED LICENSED LOTTERY. REGISTERED UNDER THE UNITED KINGDOM DATA PROTECTION ACT;

We happily announce to you the draws of (UK NATIONAL LOTTERY PROMOTION) International programs held in London, England. Your email address attached to ticket number: 3456 with serial number: 7576/06 drew the lucky number 4-2-274, which subsequently won you the lottery in the first category …
Classification: Routing in Wireless Sensor Networks

- Link quality prediction:
 - Provide a set of training links:
 - received signal strength, send/forward buffer sizes
 - node depth from base station, forward/backward probability
 - LQI = Link Quality Indication, binarized as \{Good, Bad\}
 - Train *Decision Trees* model to predict LQ using runtime features.

[Wang, Martonosi & Peh, SECON’06]
Classification: Handwritten Zip Code Recognition

- Handwritten digit recognition:
 - Provide images of handwritten digits, labeled as \{0, 1, \ldots, 9\}.
 - Train Neural Network model to recognize digits from input images.

[Le Cun et al., Neural Computation ‘89]
Classification: Medical Diagnosis

- Cancer diagnosis from gene expression signatures:
 - Create database of gene expression profiles (X) from tissues of known cancer status (Y):
 - Human acute leukemia dataset:
 - http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
 - Colon cancer microarray data:
 - http://microarray.princeton.edu/oncology
 - Train *Logistic Regression* / *SVM* / *RVM* model to classify the gene expression of a tissue of unknown cancer status.

[Lecture 01](#)
ML for Software Verification / ATP

- Software verification requires theorem proving.
- Proving a mathematical theorem requires finding and using relevant previous theorems and definitions:
 - The space of existing theorems and definitions is huge.
 - Use machine learning to narrow the search space to relevant theorems and definitions:
Classification: Other Examples

- Named Entity Recognition
- Named Entity Disambiguation
- Relation Extraction
- Word Sense Disambiguation
- Coreference Resolution
- Sentiment Analysis
- Chord Recognition
- Voice Separation
- Tone recognition
- Gesture Recognition

- Galaxy Morphology Recognition
- Dysarthria Prediction
- Tone Classification in Mandarin Chinese
- …
Regression: Examples

1. **Stock market prediction:**
 - Use the current stock market conditions \(x \in X \) to predict tomorrow’s value of a particular stock \(t \in T \).

2. **Oil price, GDP, income prediction.**

3. **Chemical processes:**
 - Predict the yield in a chemical process based on the concentrations of reactants, temperature and pressure.

- **Algorithms:**
 - *Linear Regression*, *Neural Networks*, *Support Vector Machines*, …
Unsupervised Learning: Hierarchical Clustering

Pan Troglodytes
Homo Sapiens
Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
 – Examples in the same cluster are very similar.
 – Examples in different clusters are very different.
Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
 – Examples in the same cluster are very similar.
 – Examples in different clusters are very different.

• Need to provide:
 – number of clusters ($k = 2$)
 – similarity measure (Euclidean)
Unsupervised Learning: Dimensionality Reduction

- **Manifold Learning:**
 - Data lies on a low-dimensional manifold embedded in a high-dimensional space.
 - Useful for *feature extraction* and *visualization*.
Unsupervised Feature Learning: Auto-encoders

\[[25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91, 67, 59, 72, 33, 112, 54, 35, ..., 9, 18, 37, 18, 142, 162, 54, 53, ..., 28, 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...] \]
Learned Features (Representations)
Learned Features (Representations)
Reinforcement Learning
Reinforcement Learning: TD-Gammon

• Learn to play Backgammon:
 – Immediate reward:
 • +100 if win
 • –100 if lose
 • 0 for all other states
 – *Temporal Difference Learning* with a *Multilayer Perceptron*.
 – Trained by playing 1.5 million games against itself.
 – Played competitively against top-ranked players in international tournaments.

[Tesauro, CACM‘95]
Reinforcement Learning

• Interaction between agent and environment modeled as a sequence of actions & states:
 – Learn policy for mapping states to actions in order to maximize a reward.
 – Reward may be given only at the end state => delayed reward.
 – States may be only partially observable.
 – Trade-off between exploration and exploitation.

• Examples:
 – Backgammon [Tesauro, CACM‘95], helicopter flight [Abbeel, NIPS’07].
 – AlphaGo [Silver et al., 2016], AlphaZero [Silver et al., 2017].
Relevant Disciplines

• Mathematics:
 – Probability & Statistics
 – Information Theory
 – Linear Algebra
 – Optimization

• Algorithms:
 – Computational Complexity
 – Dynamic Programming

• Artificial Intelligence
 – Search

• Neurobiology
Supplemental Readings

• PRML 1.2, 2.1 – 2.1.1, 2.2 – 2.2.1, 2.3 (2.3.4, 2.3.9).
• PRML Appendix B and C.