Statistical Properties of Text

• **Zipf’s Law** models the distribution of terms in a corpus:
 – How many times does the k^{th} most frequent word appears in a corpus of size N words?
 – Important for determining index terms and properties of compression algorithms.

• **Heap’s Law** models the number of words in the vocabulary as a function of the corpus size:
 – What is the number of unique words appearing in a corpus of size N words?
 – This determines how the size of the inverted index will scale with the size of the corpus.
Word Distribution

• **A few words are very common:**
 – The 2 most frequent words (e.g. “the”, “of”) can account for about 10% of word occurrences.

• **Most words are very rare:**
 – Half the words in a corpus appear only once, called *hapax legomena* (Greek for “read only once”)

• **A “heavy tailed” or “long tailed” distribution:**
 – Since most of the probability mass is in the “tail” compared to an exponential distribution.
Word Distribution

Frequency vs. rank for all words in Moby Dick

Lecture 01
Moby Dick:
- 44% hapax legomena
- 17% dis legomena

“Honorificabilitudinitatibus”:
- Shakespeare’s hapax legomenon
- longest word with alternating vowels and consonants
Zipf’s Law

• Rank all the words in the vocabulary by their frequency, in decreasing order.
 – Let $r(w)$ be the rank of word w.
 – Let $f(w)$ be the frequency of word w.

• Zipf (1949) postulated that frequency and rank are related by a power law:

$$ f(w) = \frac{c}{r(w)} $$

 – c is a normalization constant that depends on the corpus.
Zipf’s Law

• If the most frequent term (the) occurs f_1 times:
 – Then the second most frequent term (of) occurs $f_1 / 2$ times.
 – The third most frequent term (and) occurs $f_1 / 3$ times, …

• **Power Laws**: $y = cx^k$
 – Zipf’s Law is a power law with $k = -1$.
 – Linear relationship between log(y) and log(x):
 • $\log(y) = \log c + k \log(x)$
 • on a log scale, power laws give a straight line with slope k.

• Zipf is quite accurate, except for very high and low rank.
Zipf’s Law Fit to Brown Corpus

\[f(w) = \frac{100000}{r(w)} \]
Mandelbrot’s Distribution

- The following more general form gives a bit better fit:
 \[f = c / (r + \rho)^K \]

- When fit to Brown corpus:
 - \(c = 105.4 \)
 - \(K = -1.15 \)
 - \(\rho = 100 \)
Mandelbrot’s Law Fit to Brown Corpus

Mandelbrot’s function on Brown corpus
Zipf’s Law Impact on IR

- **Good News:**
 - Stopwords will account for a large fraction of text, so eliminating them greatly reduces inverted-index storage costs.
 - Postings list for most remaining words in the inverted index will be short since they are rare, making retrieval fast.

- **Bad News:**
 - For most words, gathering sufficient data for meaningful statistical analysis is difficult since they are extremely rare.
 - for correlation analysis for query expansion.
 - for ML estimation in language modeling.
Vocabulary vs. Collection Size

• How big is the term vocabulary?
 – That is, how many distinct words are there?

• Can we assume an upper bound?
 – Not really upper-bounded due to proper names, typos, etc.

• In practice, the vocabulary will keep growing with the collection size.
Heap’s Law

• **Given:**
 - \(M \) is the size of the vocabulary.
 - \(T \) is the number of tokens in the collection.

• **Then:**
 - \(M = kT^b \)
 - \(k, b \) depend on the collection type:
 - typical values: \(30 \leq k \leq 100 \) and \(b \approx 0.5 \) (square root).
 - in a log-log plot of \(M \) vs. \(T \), Heaps’ law predicts a line with slope of about \(\frac{1}{2} \).
Heap’s Law Fit to Reuters RCV1

- For RCV1, the dashed line \(\log_{10} M = 0.49 \log_{10} T + 1.64 \) is the best least squares fit.

- Thus, \(M = 10^{1.64} T^{0.49} \) so \(k = 10^{1.64} \approx 44 \) and \(b = 0.49 \).

- For first 1,000,020 tokens:
 - Law predicts 38,323 terms;
 - Actually, 38,365 terms.
 \(\Rightarrow \) Good empirical fit for RCV1!
Explanations

• **Zipf’s Law:**
 – Zipf’s explanation was his “principle of least effort”:
 • Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.
 – Herbert Simon’s explanation is “rich get richer.”
 – Li (1992) shows that just random typing of letters including a space will generate “words” with a Zipfian distribution.

• **Heaps’ Law:**
 – Can be derived from Zipf’s law by assuming documents are generated by randomly sampling words from a Zipfian distribution.