
Transmission Control ProtocolTransmission Control Protocol

• Major transport service in the TCP/IP suite

• Reliable transfer

• Stream paradigm

• Full duplex connections

• Flow control

• Uses IP for datagram transmission

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
1Copyright Shawn Ostermann/Douglas Comer 2012



Transmission Control Protocol
Details

Transmission Control Protocol
Details

• Allows sender to generate a stream of bytes in convenient

chunks

• Divides stream into small segments for transmission

• Sends each segment in IP datagram

• Receiving TCP returns acknowledgement upon successful

receipt of data

• Sender starts timer after segment sent, and retransmits

unless positive acknowledgement arrives

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
2Copyright Shawn Ostermann/Douglas Comer 2012



TCP RetransmissionTCP Retransmission

• Designed for internet environment

- Delays on one connection vary over time

- Delays vary widely between connections

• Fixed value for timeout will fail

- Waiting too long introduces unnecessary delay

- Not waiting long enough wastes network bandwidth with

unnecessary retransmission

• Retransmission strategy must be adaptive

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
3Copyright Shawn Ostermann/Douglas Comer 2012



Adaptive RetransmissionAdaptive Retransmission

• TCP keeps estimate of round-trip time on each connection

• Round-trip estimate derived from observed delay between

sending segment and receiving acknowledgement

• Timeout for retransmission based on current round-trip

estimate

• Heuristics can sometimes fail (e.g., round-trip delay

changes quickly)

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
4Copyright Shawn Ostermann/Douglas Comer 2012



TCP DetailsTCP Details

• Segment contains checksum for data being sent

• Receiver acknowledges highest byte received, not each

specific segment

• Protocol port numbers used to distinguish among multiple

application programs

• Receiver controls flow by telling sender size of currently

available buffer

• Called window advertisement

• Each segment contains advertisement, including data

segments

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
5Copyright Shawn Ostermann/Douglas Comer 2012



TCP Details
(continued)

TCP Details
(continued)

• Receiver can send additional acknowledgments whenever

buffer space becomes available

• Data flow may be shut down in one direction

• Connections started reliably, and terminated gracefully

• Connection established (and terminated) with a 3-way

handshake

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
6Copyright Shawn Ostermann/Douglas Comer 2012



3-Way Handshake
For Connection Startup

3-Way Handshake
For Connection Startup

Send SYN seq=x

Receive SYN segment
Send SYN seq=y, ACK x+1

Receive SYN + ACK segment
Send ACK y+1

Receive ACK segment

Events At Site 1 Network Messages Events At Site 2

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
7Copyright Shawn Ostermann/Douglas Comer 2012



TCP Segment FormatTCP Segment Format

0 16 31

TCP SOURCE PORT TCP DESTINATION PORT

SEQUENCE NUMBER

ACK NUMBER

HLEN & RES CODE BITS WINDOW

CHECKSUM URGENT POINTER

OPTIONS ... padding

... DATA ...

• Offset specifies header size (offset of data) in 32-bit words

• Code bits specify urgent, ack, push, reset, syn, or fin

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
8Copyright Shawn Ostermann/Douglas Comer 2012



TCP Acknowledgement ExampleTCP Acknowledgement Example

HOST A HOST B

NET IFACE

IP

TCP

NET IFACE

IP

TCP

12345678
ILOVE544

Sending
Appl

8 7 6 5 4 3 2 1
4 4 VO L I

Receiving
Appl

INTERNET
• Assume octets 5 & 6 lost

• Sender transmits octets 7 & 8

• Receiver acknowledges octets 1 4

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
9Copyright Shawn Ostermann/Douglas Comer 2012



Example Packet Trace
For TCP Connection

Example Packet Trace
For TCP Connection

G

A

P2

B

P1

IP Addr=  IG
Ether Addr= EG

IP Addr=  IG2
Ether Addr= EG2

IP Addr=  IA
Ether Addr= EA
TCP port  99

IP Addr=  IB
Ether Addr= EB

TCP port  25

monitor point

• Machines A, B, G boot

• P1 forms TCP connection to P2, sends one octet of data,
and closes connection

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
10Copyright Shawn Ostermann/Douglas Comer 2012



Example Packet Trace
(continued)

Example Packet Trace
(continued)

Hardware Frame Address Resolution Message

Src Dst Typ Op Snd IP Snd E Tar IP Tar E

1 EA * ARP REQ IA EA IG ?

2 EG EA ARP RSP IG EG IA EA

Hardware Frame IP Datagram TCP Segment

Src Dst Typ Src Dst Typ Src Dst Type

3 EA EG IP IA IB TCP 99 25 SYN

4 EG EA IP IB IA TCP 25 99 SYN+ACK

5 EA EG IP IA IB TCP 99 25 ACK

6 EA EG IP IA IB TCP 99 25 DAT

7 EG EA IP IB IA TCP 25 99 ACK

8 EA EG IP IA IB TCP 99 25 FIN+ACK

9 EG EA IP IB IA TCP 25 99 ACK

10 EG EA IP IB IA TCP 25 99 FIN+ACK

11 EA EG IP IA IB TCP 99 25 ACK

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
11Copyright Shawn Ostermann/Douglas Comer 2012



Conceptual LayeringConceptual Layering

Network Interface

Internet (IP)

Reliable Stream (TCP) User Datagram (UDP)

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
12Copyright Shawn Ostermann/Douglas Comer 2012



Assignment Of
Protocol Ports
Assignment Of
Protocol Ports

• Need globally fixed ports for globally-known services

• Need dynamically allocated ports for other services

• Accommodate with two port types

- Statically assigned ports

- Dynamically assigned ports

• Note: servers use statically assigned ports; clients use

dynamically assigned ports

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
13Copyright Shawn Ostermann/Douglas Comer 2012



Statically Assigned PortsStatically Assigned Ports

• Called “well-known”

• Used for services like e-mail

• Fixed by Internet Assigned Numbers Authority

• Use “small” values

• In UNIX, values less than 1000 reserved for privileged

programs

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
14Copyright Shawn Ostermann/Douglas Comer 2012



Dynamically Assigned PortsDynamically Assigned Ports

• Available for user applications

• Operating system chooses when application begins

• Programmer responsible for devising mechanism to inform

other programs

• Use “large” values

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
15Copyright Shawn Ostermann/Douglas Comer 2012



Program Interface To
Port Assignment

Program Interface To
Port Assignment

• Port numbers should not be encoded in programs as literal

constants

• Most systems provide

- Database of service names

- Library routines that use the database to map names

into protocol port numbers (e.g., getservbyname)

• Site can add local definitions to the database

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
16Copyright Shawn Ostermann/Douglas Comer 2012



Example Service Mapping Database
(/etc/services in UNIX)

Example Service Mapping Database
(/etc/services in UNIX)

echo 7/tcp

echo 7/udp

ftp 21/tcp

telnet 23/tcp

smtp 25/tcp

time 37/tcp

time 37/udp

nameserver 53/tcp

nameserver 53/udp

foobar 2001/udp

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
17Copyright Shawn Ostermann/Douglas Comer 2012



Example Service Mapping Database
(continued)

Example Service Mapping Database
(continued)

• Program contains literal constants for name of service and

name of protocol

• Program calls library routine to obtain port number

• Port mapping can be changed without recompiling program

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
18Copyright Shawn Ostermann/Douglas Comer 2012



TCP Formal Specification
(Finite State Machine)

TCP Formal Specification
(Finite State Machine)

• TCP behavior specified with finite state machine

• At any instant, each side of TCP connection is in one state

• Think of the state machine as controlling response to input

• Arrival of a segment can cause a state transition

• A local operation can also cause a state transition (e.g.,

close)

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
19Copyright Shawn Ostermann/Douglas Comer 2012



TCP Finite State MachineTCP Finite State Machine

CLOSED

LISTEN

SYN
RECVD

SYN
SENT

ESTAB−
LISHED

FIN
WAIT−1

CLOSE
WAIT

CLOSING

FIN
WAIT−2

TIME
WAIT

LAST
ACK

 anything/reset

 begin

 active open/syn

 close passive open

 send/syn
syn/syn + ack

reset

ack

 close/fin

syn/syn + ack

syn + ack/ack

 close/fin

fin/ack

fin/ack

ack/ fin−ack/ack

fin/ack

ack/

 close/fin

ack/

 close/

 timeout/
reset

 timeout after 2 segment lifetimes  

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
20Copyright Shawn Ostermann/Douglas Comer 2012



Example Transition:
Opening A Connection
Example Transition:

Opening A Connection

• Both sides create TCP endpoint (e.g., using socket calls)

• TCP software on both sides record that connection is
initially in CLOSED state

• Server side issues passive open and waits in LISTEN state

• Client issues active open, sends SYN segment, and moves
to SYN SENT state

• Server side receives SYN, sends SYN plus ACK, and moves
to SYN RECVD state

• Client receives SYN plus ACK, sends ACK, and moves to
ESTABLISHED state

• Server receives ACK and moves to ESTABLISHED state

• Now both sides agree that connection is open

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
21Copyright Shawn Ostermann/Douglas Comer 2012



Maximum Segment SizeMaximum Segment Size

• TCP endpoints use the MSS option to exchange the

maximum segment that they are willing to receive

- Improves efficiency

- Is a function of the networks between the hosts

• TCP tries to avoid sending segments that will have to

be fragmented

- Fragmentation decreases effeciency

- Fragmentation decreases throughput

• Normal sizes are network MTU for local connections and

576 for non-local

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
22Copyright Shawn Ostermann/Douglas Comer 2012



Adaptive RetransmissionAdaptive Retransmission

• The problem is knowing when to retransmit

• TCP keeps estimate of round-trip time for each connection

• Round-trip estimate computed from observing difference in

times when segment transmitted, and time when ACK

arrives

• Timeout for retransmission is function of round trip

estimate

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
23Copyright Shawn Ostermann/Douglas Comer 2012



Difficulties With Adaptive
Retransmission

Difficulties With Adaptive
Retransmission

• Segments or ACKs can be lost or delayed, making round
trip estimation difficult or inaccurate

• Round trip times vary over several orders of magnitude
between different connections

• Traffic is bursty, so round trip times fluctuate wildly on a
single connection

• Load imposed by a single connection can congest gateways
or networks

• Retransmission can cause congestion

• Because an internet contains diverse network hardware
technologies, there may be little or no control for
intra-network congestion

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
24Copyright Shawn Ostermann/Douglas Comer 2012



Solution: SmoothingSolution: Smoothing

• Adaptive retransmission schemes keep a statistically

smoothed round trip estimate

• Smoothing keeps running average from fluctuating wildly,

and keeps TCP from overreacting to change

• Difficulty: choice of smoothing scheme

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
25Copyright Shawn Ostermann/Douglas Comer 2012



Original Smoothing SchemeOriginal Smoothing Scheme

• Let RTT be current (old) average round trip time

• Let NRT be a new sample

• Compute
RTT = α ∗RTT + β ∗NRT

where
α+ β = 1

• Example: α = 0.8,0.2

• Large α makes estimate less susceptible to a single long
delay (more stable)

• Large β makes estimate track changes in round trip time
quickly

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
26Copyright Shawn Ostermann/Douglas Comer 2012



Problems With Original
Scheme

Problems With Original
Scheme

• Associating ACKs with transmissions

- TCP acknowledges receipt of data, not receipt of

transmission

- Assuming ACK corresponds to most recent transmission

can cause instability in round trip estimate (Cypress

syndrome)

- Assuming ACK corresponds to first transmission can

cause unnecessarily long timeout

- Both assumptions lead to lower throughput

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
27Copyright Shawn Ostermann/Douglas Comer 2012



Partridge/Karn Scheme
(Also called Karn’s Algorithm)

Partridge/Karn Scheme
(Also called Karn’s Algorithm)

• Solves the problem of associating ACKs with correct

transmission

• Specifies ignoring round trip time samples that correspond

to retransmissions

• Separates timeout from round trip estimate for

retransmitted packets

• Starts (as usual) with retransmission timer as a function of

round trip estimate

• Doubles retransmission timer value for each retransmission

without changing round trip estimate

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
28Copyright Shawn Ostermann/Douglas Comer 2012



Partridge/Karn Scheme
(continued)

Partridge/Karn Scheme
(continued)

• Resets retransmission timer to be function of round trip

estimate when ACK arrives for nonretransmitted segment

• Works well for occasional packet loss

• Provides exponential backoff from completely saturated

network

• Does not solve the problem of flow control or congestion

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
29Copyright Shawn Ostermann/Douglas Comer 2012



Flow Control And CongestionFlow Control And Congestion

• Receiver advertises window that specifies how many

additional bytes it can accept

• Window size of zero means sender must not send normal

data (ACKs and urgent data allowed)

• Receiver can never decrease window beyond previously

advertised point in sequence space

• Sender chooses effective window smaller than receiver’s

advertised window if congestion detected

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
30Copyright Shawn Ostermann/Douglas Comer 2012



Jacobson/Karels
Congestion Control
Jacobson/Karels

Congestion Control

• Assumes long delays (packet loss) due to congestion

• Uses successive retransmissions as measure of congestion

• Reduces effective window as retransmissions increase

• Effective window is minimum of receiver’s advertisement

and computed quantity known as the congestion window

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
31Copyright Shawn Ostermann/Douglas Comer 2012



Multiplicative DecreaseMultiplicative Decrease

• In steady state (no congestion) the congestion window is

equal to the receiver’s window

• When segment lost (retransmission timer expires), reduce

congestion window by half

• Never reduce congestion window to less than one maximum

sized segment

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
32Copyright Shawn Ostermann/Douglas Comer 2012



Jacobson/Karels Slow StartJacobson/Karels Slow Start

• Used when starting traffic or when recovering from

congestion

• Self-clocking startup to increase transmission rate rapidly as

long as no packets are lost

• When starting traffic, initialize the congestion window to

the size of a single maximum sized segment

• Increase congestion window by size of one segment each

time an ACK arrives without retransmission

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
33Copyright Shawn Ostermann/Douglas Comer 2012



Jacobson/Karels
Congestion Avoidance

Jacobson/Karels
Congestion Avoidance

• When congestion first occurs, record one-half of last

successful congestion window size in a threshold variable

(field ssthresh in the code)

• During recovery, use slow start until congestion window

reaches threshold

• Above threshold, slow down and increase congestion

window by one segment per window (even if more than one

segment was successfully transmitted in that interval)

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
34Copyright Shawn Ostermann/Douglas Comer 2012



J/K Congestion Avoidance
(continued)

J/K Congestion Avoidance
(continued)

• Increment window size on each ACK instead of waiting for

complete window

increase = segment / window

Let N be segments per window, or

N = congestion window/max segment size

so

increase = segment / N

= (MSS bytes / N)

= MSS / (congestion win/MSS)

or

increase = (MSS*MSS)/congestion win

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
35Copyright Shawn Ostermann/Douglas Comer 2012



Changes In DelayChanges In Delay

• Original smoothing scheme tracks the mean but not

changes

• To track changes, compute DIFF = SAMPLE - RTT

RTT = RTT + δ * DIFF

DEV = DEV + δ (|DIFF| - DEV)

• DEV estimates mean deviation

• δ is fraction between 0 and 1 that weights new sample

• Retransmission timer is weighted average of RTT and

DEV: RTO = µ*RTT + φ*DEV

• Typically, µ = 1 and φ = 4

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
36Copyright Shawn Ostermann/Douglas Comer 2012



Urgent DataUrgent Data

• Segment with urgent bit set contains pointer to last octet

of urgent data

• Urgent data occupies part of normal sequence space

• Urgent data can be retransmitted

• Receiving TCP should deliver urgent data to application

“immediately” upon receipt

✬

✫

✩

✪CS 444/544 Chapter 12 - TCP
37Copyright Shawn Ostermann/Douglas Comer 2012


