How/When Are IP Routing Tables Built?

- We already understand how routing tables are used
- The next questions are:
 - What values should routing tables contain?
 - How can those values be obtained?
- Depends on size/complexity of internet
- Static routing
 - Routes fixed at boot time
 - Useful only for simple networks
- Automatic routing
 - Table initialized at boot time
 - Values inserted/updated by protocols that propagate route information
 - Necessary in large internets

Routing with Partial Information

- Hosts and routers generally need different amounts of routing information
 - Many times, all a host needs is the address of a single router to use for all non-local traffic
 A host can route datagrams successfully even if it only has partial routing information because it can rely on a router.
 - A router generally needs more detailed information
- Default routes can be helpful in certain situations, but can lead to confusion:
 - Pomeroy right lane, Marietta left lane, all others straight ahead
 - Will that lead me to Washington DC?
 - Will following that route yield the shortest path?

Default Host Routing Example #1

- Architecture: hosts on an isolated Ethernet
- Static routing
- Host routing table

Destination	Mask	Route	
132.235.0.0	ffff0000	direct	

Default Host Routing Example #2

- Architecture: hosts on an Ethernet with one gateway
- Static routing
- Host routing table

Destination	Mask	Route
132.235.0.0	ffff0000	direct
default	00000000	132.235.8.1

Host Routing Example #3

- Architecture: hosts on an Ethernet with two gateways
- Static routing + ICMP redirects
- Initial host routing table

Destination	Mask	Route
132.235.0.0	ffff0000	direct
default	00000000	132.235.8.1

Host Routing Example #3 (continued)

- Host generates datagram for 192.5.48.3, which lies beyond
 G2
- Host routes datagram to G1
- ICMP redirect from G1 updates table

Destination	Mask	Route
132.235.0.0	ffff0000	direct
192.5.48.0	ffffff00	132.235.254.253
default	00000000	132.235.8.1

Core Routers

- The old ARPANET had a very simple topology in which local networks were connected to the Arpanet through core routers
 - Local networks could rely on simple default routes
 - Only core routers needed detailed information

Why Must Core Routers be Smart?

- Even with this simple case, the core routers cannot rely on default routes
 - If they did, then routes across the core would not be efficient
 - For example, core router R_1 could use router R_2 as it's default, R_2 could use R_3 , etc, with R_n using R_0
 - All packets would eventually get where they were going, but it would not be efficient
- There needs to be a way for core routers to exchange information about the local networks that they are connected to

Vector Distance Algorithm

- One gateway sends its routing table to another
- Table contains pairs of destination network and distance
- Receiver replaces entries in its table by routes to the sender if routing through the sender is less expensive than the current route
- Receiver propagates new routes next time it sends out an update
- Algorithm has several well-known shortcomings

GGP

- The original core routers used a vector-distance protocol called *gateway-to-gateway Protocol*, GGP
- Interesting, but obsolete protocol
- Updates traveled in IP datagrams, (like UDP)

GGP Update Contents

- Each update contains:
 - Sequence number
 - Number up distances
 - Distance 1
 - Number of nets of distance 1
 - Network 1 address at distance 1
 - Network 2 address at distance 1
 - ...
 - Distance n
 - Number of nets of distance n
 - Network 1 address at distance n
 - Network 2 address at distance n
 - ...

Link-State Algorithm

- All gateways know topology
- Think of gateways as nodes in a graph, and networks connecting them as edges or links
- All gateways propagate status of directly connected links periodically
- All gateways recompute routes from their copy of link information
- Also called Shortest Path First (SPF)
 - Comes from Dijkstra's short path algorithm

Gateway Types

- Gateways that live in the "middle" of the Internet are called Core gateways
- There are also noncore gateways
 - Any gateway that is not part of the core system
 - Might not be "trusted" by core gateways
 - Might not be maintained by the same group as the core gateways
 - Does not participate directly in core's routing information propagation algorithm
 - May not choose optimal routes if it uses the core except for local delivery

Example Of Hidden Networks

- Propagation of route information is independent of datagram routing
- Core gateway must learn routes from non-participating gateways
- Example: owner of networks 1 and 3 must tell core about route to network 4

Exterior Gateway Protocol (EGP)

- Standard Internet protocol
- Solves two problems
 - Allows noncore gateway to advertise networks hidden in its autonomous system
 - Allows noncore gateways to learn routes from the core
- Designed for communication with the Internet core system
- Now used primarily between pairs of autonomous systems

EGP Details

- Gateway in one autonomous system becomes the peer (neighbor) of a gateway in another autonomous system
- The two peers periodically poll each other
- Protocol keeps test of whether neighbor is alive separate from reachability update
- Polling rates may be asymmetric
- EGP supports messages for
 - Neighbor acquisition
 - Liveness test
 - Poll for update
 - Route update

Exchanging Routing Information Within An Autonomous System

- Mechanisms called interior gateway protocols, IGPs
- Choice of IGP is made by autonomous system
- Some gateway in the autonomous system advertises network reachability to other autonomous systems with EGP
- Example IGPs are RIP, HELLO, and OSPF

Routing Information Protocol (RIP)

- Implemented by 4BSD UNIX program routed
- Uses hop count metric
- Vector-distance protocol
- Relies on broadcast
- Assumes low-delay local area network
- Uses split horizon and poison reverse techniques to solve inconsistencies
- RIP2 includes subnet mask information

Slow Convergence Problem (Count To Infinity)

Gateways with routes to network N

G1 erroneously routes to G2 after failure

Problem solved using split horizon and hold down

RIP Update Format

0	8	16	31		
COMMAND	VERSION	RESERVED			
FAMILY (OF NET 1	NET 1 ADDR., OCTETS 1	- 2		
	NET 1 ADDRESS, OCTETS 3 - 6				
NET 1 ADDRESS, OCTETS 7 - 10					
NET 1 ADDRESS, OCTETS 11 - 14					
DISTANCE OF NETWORK 1					
FAMILY (OF NET 2	NET 2 ADDR., OCTETS 1	- 2		
NET 2 ADDRESS, OCTETS 3 - 6					
NET 2 ADDRESS, OCTETS 7 - 10					
NET 2 ADDRESS, OCTETS 11 - 14					
DISTANCE OF NETWORK 2					
• • •					

- Uses family field to support multiple protocols
- Message travels in UDP datagram

HELLO Protocol

- Mostly of historical interest
- Developed by Dave Mills
- Used by NSFNET fuzzballs
- Uses metric based on delay
- Participants keep track of delay between pairs of gateways
- HELLO propagates delay information across net
- Route chosen to minimize total delay

OSPF Protocol

- Uses SPF algorithm for better scaling the vector-distance mechanisms
- Designed by the IETF
- Open standard
- Included type of service routing
 - Can install multiple routes to a destination based on the type of service field in the IP header
- Provides load balancing
 - Can specify multiple routes to a destination, OSPF will use them all
- Includes various authentication schemes
 - Only trusted routers can propagate routing information
- Supports host-specific routes and subnets

BGP - Border Gateway Protocol

- ! this slide is from Doug's online notes
 - The most popular (virtually the only) EGP in use in the Internet
 - Current version is BGP-4
 - Allows two autonomous systems to communicate routing information
 - Supports CIDR (mask accompanies each route)
 - Each AS designates a border router to speak on its behalf
 - Two border routers become BGP peers

Key Characteristics Of BGP

- Provides inter-autonomous system communication
- Propagates reachability information
- Follows next-hop paradigm
- Provides support for policies
- Sends path information
- Permits incremental updates
- Allows route aggregation
- Allows authentication