
Managing Projects with MakeManaging Projects with Make

Managing compilation and linking in a medium to large

programming project with multiple modules can be a daunting

task, especially if the compilation and linking stages require

complicated command-line arguments.

Fortunately, there is a standard UNIX tool called make that

automates much of this process.

The make command looks for a file call “makefile” (first

choice) or “Makefile” (second choice) in the current directory.

The Makefile contains the steps necessary to make or update

certain files.

✬

✫

✩

✪CS 444/544 Make
1Copyright Shawn Ostermann/Douglas Comer 2012

Versions of makeVersions of make

• There’s “old make”

– Sometimes called omake

– You probably won’t find one of these

• There’s “new make”

– Sometimes called nmake

– Normally just called make

– /usr/ccs/bin/make on the prime machines

• Then there “gnu make”

– Usually called gmake

– The standard under Linux; usually just called “make”

– /usr/local/bin/gmake on the prime machines

✬

✫

✩

✪CS 444/544 Make
2Copyright Shawn Ostermann/Douglas Comer 2012

Gnu MakeGnu Make

• gmake understands all of “old make”

• gmake understands most of “new make”

• gmake is MUCH BETTER

– So that’s what I’ll be talking about

• gmake first looks for file GNUmakefile

– Then makefile, then Makefile

• If the file is “truly gmake only”, it should be called

GNUmakefile

✬

✫

✩

✪CS 444/544 Make
3Copyright Shawn Ostermann/Douglas Comer 2012

Makefile SyntaxMakefile Syntax

• Variables:
VARNAME = string

For Example:
CFLAGS = -g -Wall -Werror -O2

These variables may be referenced by typing
$(VARNAME)

or
${VARNAME}

• Dependencies
file1: file2 file3 file4

This “means” that in order to make file1, file2, file3, and
file4 must already exist and must be current.

• Rules
file1: file2 file3 file4

︸︷︷︸

TAB

cat file2 file3 file4 >file1

✬

✫

✩

✪CS 444/544 Make
4Copyright Shawn Ostermann/Douglas Comer 2012

Using MakeUsing Make

When you issue the command make, the make command
searches the makefile for the first rule and uses this for its
target. Make first ensures that all the files on which the target
depends are up to date, and then it creates the target if it
either doesn’t exist or if it is older than one of the files on
which it depends.

Example

CFLAGS = -g -Wall -Werror -O2
CC = gcc
This is a comment
x: x1.o x2.o x3.o

$(CC) -o x $(CFLAGS) x1.o x2.o x3.o
x1.o : x1.c project.h

$(CC) -c $(CFLAGS) x1.c
x2.o : x2.c

$(CC) -c $(CFLAGS) x2.c
x3.o : x3.c

$(CC) -c $(CFLAGS) x3.c

✬

✫

✩

✪CS 444/544 Make
5Copyright Shawn Ostermann/Douglas Comer 2012

Make is Smart!!Make is Smart!!

Because make understands how to do many things on its own,

the previous example can be shortened to:

Shorter Example

CFLAGS = -g -Wall -Werror -O2
CC = gcc
This is a comment
x: x1.o x2.o x3.o

$(CC) -o x $(CFLAGS) x1.o x2.o x3.o
x1.o : x1.c project.h

and make will use the CFLAGS and CC that you specified to

compile x[123].c without further instructions on your part.

✬

✫

✩

✪CS 444/544 Make
6Copyright Shawn Ostermann/Douglas Comer 2012

Make Buildin Rules for CMake Buildin Rules for C

Variable Default

CC cc
CFLAGS
CPPFLAGS
COMPILE.c $(CC) $(CFLAGS) $(CPPFLAGS) -c
LINK.c $(CC) $(CFLAGS) $(CPPFLAGS)

$(LDFLAGS)

✬

✫

✩

✪CS 444/544 Make
7Copyright Shawn Ostermann/Douglas Comer 2012

Make Buildin Rules for C++Make Buildin Rules for C++

Variable Default

CCC CC
CCFLAGS CFLAGS
CPPFLAGS
COMPILE.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) -c
LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS)

$(LDFLAGS)
COMPILE.C $(CCC) $(CCFLAGS) $(CPPFLAGS) -c
LINK.C $(CCC) $(CCFLAGS) $(CPPFLAGS)

$(LDFLAGS)

✬

✫

✩

✪CS 444/544 Make
8Copyright Shawn Ostermann/Douglas Comer 2012

WildcardsWildcards

• Here’s some fun stuff:

SOURCES=${wildcard *.sm}

BASENAME=${SOURCES:.sm=}

PSFILES=${SOURCES:.sm=.ps}

DVIFILES=${SOURCES:.sm=.dvi}

default: ${DVIFILES} ${PSFILES} maybepdf

or

HEADERS=${wildcard *.h}

SOURCES=${wildcard *.cc}

OBJECTS=${SOURCES:.cc=.o}

✬

✫

✩

✪CS 444/544 Make
9Copyright Shawn Ostermann/Douglas Comer 2012

Optional StuffOptional Stuff

.PHONY: pdf maybepdf

EXISTING_PDF_FILES=${wildcard *.pdf}

maybepdf: ${EXISTING_PDF_FILES}

pdf: ${PDFFILES}

✬

✫

✩

✪CS 444/544 Make
10Copyright Shawn Ostermann/Douglas Comer 2012

Ostermann’s generic MakefileOstermann’s generic Makefile

• Here’s the Makefile that I keep in my source directory:

CC=gcc

CFLAGS=-Wall -Werror -O3 -g

LDLIBS=-lnsl -lm -lsocket

default:

@echo "Sorry, make doesn’t work here!"

@exit 1

✬

✫

✩

✪CS 444/544 Make
11Copyright Shawn Ostermann/Douglas Comer 2012

HintsHints

• If the default rule that you want to run (say myrule) isn’t at

the top, then you just add a first rule that says

default: myrule

• Every Makefile should have a “clean” rule

– Remove intermediate files, core dumps, executables, etc

• Read all about it on the web

http://www.gnu.org/software/make/

✬

✫

✩

✪CS 444/544 Make
12Copyright Shawn Ostermann/Douglas Comer 2012

A Really Long ExampleA Really Long Example

See the file

“prime:/home/osterman/lib/latex/Makefile.slides.example”

✬

✫

✩

✪CS 444/544 Make
13Copyright Shawn Ostermann/Douglas Comer 2012

