Internet Architecture and Philosophy

 Conceptually, TCP/IP provides three sets of services to the user:

Application Services

Reliable Transport Service

Connectionless Packet Delivery Service

- The underlying service provided is "connectionless".
 - Internet "datagrams" are simply routed independently between hosts
- The underlying service provided is "unreliable"
 - Any particular datagram might be lost, damaged, delayed, or re-ordered

Internet Protocol (IP)

- Basic unit of Internet transfer
- Embodies a connectionless packet delivery service
- Analogous to physical network packet
- Composed of
 - Header that contains source and destination
- Internet addresses, datagram type field, etc.
 - Data area that contains data being carried

IP Datagram Format

 An IP data consists of an IP header of (at least) 20 octets followed by the encapsulated IP data

Encapsulation

- IP datagram travels in physical network frame
- Complete datagram is treated as data by the hardware
- TCP/IP defines standards for encapsulation on most network hardware technologies

- Complete IP datagram is treated as data in physical network frame
- Encapsulation occurs in network interface software as the last step before the datagram is transmitted

Datagram Encapsulated In An Ethernet Frame

```
02 07 01 00 27 ba 08 00 2b 0d 44 a7 08 00 45 00 00 54 82 68 00 00 ff 01 35 21 84 eb 01 01 84 eb 01 02 08 00 73 0b d4 6d 00 00 04 3b 8c 28 28 20 0d 00 00 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37
```

- IP header follows 14 octet Ethernet frame header and contains 20 octets
- IP source: 132.235.1.1 (84eb0101)
- IP destination: 132.235.1.2 (84eb0102)
- IP type: 01 (ICMP)

Network MTU

- Each network hardware technology imposes a fixed limit on the maximum size of a packet
- Size limit called Maximum Transmission Unit (MTU)
- Encapsulated datagram must be less than network MTU
- Possible solutions
 - Force datagram to be less than smallest possible MTU
 - Inefficient
 - Difficult to know minimum MTU
 - (See RFC 1191 Path MTU Discovery)
 - Choose initial datagram size that seems appropriate and handle problems later
 - (IP uses the latter)

Datagram Fragmentation

- Needed when datagram larger than network MTU over which it must travel
- Performed by gateways
- Divides datagram into several, smaller datagrams called fragments
- Each fragment routed as independent datagram
- Final destination reassembles fragments
 - What's the other alternative?
 - Which way is "right"?

Datagram Fragmentation Details

- Each fragment is a datagram
- Gateway replicates initial datagram header for all fragments
- Offset field in header gives offset in original datagram for data in this fragment
- Two necessary bits in fragment flags field
 - "More Fragments" bit
 - Can infer "this is a fragment"
 - Can infer "last fragment"
 - Additional bit set in header to indicate "don't fragment"

Example Of Fragmentation

Original datagram

Headerdata1data2data3400 bytes400 bytes400 bytes
--

Header1 data1 fragment 1 (offset of 0)

Header2 data2 fragment 2 (offset of 400)

Header3 data3 fragment 3 (offset of 800)

- Offset specifies where data belongs in original datagram
- Offset actually stored as multiples of 8 octets
- More fragments bit turned OFF in header of fragment #3

IP Options

• Option field is broken into 3 sub-fields

0	1	2	3	4	5	6	7	
Copy		Class		Op	tion N	lumb	er	

- Copy
 - 0 means copy only into first fragment
 - 1 means copy into all fragments
- Class
 - 0 Datagram or network control
 - 2 Debugging and measurement
 - 1,3 Reserved

IP Options (continued)

• A few of the defined IP options:

Option	Option		
Class	Number	Length	Description
0	0	-	End of option list.
			Used if options do not
			end at end of header
0	1	_	No operation
			(used for padding)
0	3	var	Loose source routing.
			Used to route a datagram
			along a specified path
0	7	var	Record route.
			Used to trace a
			datagram's route
0	9	var	Strict Source Routing.
			Used to route a datagram
			along a specified path
2	4	var	Internet timestamp.
			Record timestamps along
			route

Record Route Option

- Original sender enters "record route" option and leaves enough space for the expected number of gateways
- Each gateway along a datagram's path adds its IP address into the header

0		8		16		24
Code	(7)	Length	(19)	Pointer	(11)	
		Fir	st II	Addres	S	
Second IP Address						
Third IP Address (empty)						
Fourth IP Address (empty)						

- Length total length of the option, including entries not filled (plus first 3 octets)
- Pointer offset within the option of the next available slot

Source Route Options

- IP provides two forms of restricted routing, *strict* and *loose* source routing
 - With strict routing, each gateway must be directly connected to the next gateway on the list
 8
 16
 24

Code	(9) Length (19) Pointer (11)
	First Hop IP Address
	Second Hop IP Address
	Third Hop IP Address
	Fourth Hop IP Address

- Length total length of the option (plus first 3 octets)
- Pointer offset within the option of the next address to use