Semester Topics

- Network Interface Layer
 - Brief descriptions of existing network types
 - High-level description of Ethernet
- Internet Layer
 - Concentrate on IP
 - Talk a little about IPv6 (replacement technology)
- Transport Layer
 - Concentrate on TCP and UDP
- Applications (as time permits)
 - File transfer: FTP/TFTP
 - Email
 - Remote login: Telnet/RSH/SSH
 - X windows
 - WWW stuff

Class Scope

- To understand computer networking, we need an understanding of the hardware that it's built on
 - Electrical/theoretical characteristics covered in Electrical Engineering classes
 - Dr. Dill's data communication classes
 - Mechanical/practical characteristics
 - Covered in Tysko/Kruse/Ostermann's cs475/575 (Winter)
- In this class, we'll be touching briefly on these topics as needed
- For further information, check references

Two Network Communication Approaches

- Communication networks fall into two broad categories
 - Circuit-switched (connection-oriented)
 - Create a dedicated "path" between two entities that want to talk
 - Guaranteed capacity
 - Bandwidth
 - Delay
 - Others?
 - May not maximize utilization
 - Sometimes needed for real-time applications
 - Audio
 - Video
 - Call setup and teardown can be "expensive"
 - An example is the US phone system

Two Network Communication Approaches (continued)

- Packet-switched (connectionless)
 - Information broken into "packets"
 - Each packet "wanders" the network separately
 - Each packet includes identification of the destination
 - Each packet can be a different size
 - The maximum packet size is fixed
 - 1500 for slow Ethernet
 - approx 10,000 for "large" technologies
 - Motivation is to increase utilization
 - Many applications can share the capacity
- We'll concentrate on packet-switching, but will also discuss some circuit-switched technologies (like ATM)

Broad Characterization Of Packet Switched Networks

- Broad categorization
 - Packet switched networks tend to be categorized as:
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
- Local Area Networks
 - Highest speed
 - Direct connection among computers
 - Large packet sizes
 - Limited distance
- Wide Area Networks (Long Haul Network)
 - Low to medium speed
 - Usually use special-purpose switches
 - Small to medium packet sizes
 - Unlimited distance

Example Local Area Network Ethernet

- 10M bits/sec CSMA/CD network over coaxial cable
- 100M bits/sec CSMA/CD network over twisted pair
 - Currently the most common
 - Uses star topology
- Cable is passive
 - All active electronics in attached hosts
- Length limited to 1500 meters (500 meters per cable segment)
 - 500 meter limitation is for "signal quality"
 - 1500 meter limitation provides collision detection guarantees
- Cards receive all packets, ignore those addressed to others
- IEEE standard known as 802.3

Gigabit Ethernet

- Aka "GigE"
- 1000M bits/sec CSMA/CD network
 - Normally "full duplex"
- Currently supported by many newer computers
 - Interconnections (hubs/switches) still relatively expensive
- Uses star topology
- Example cabling
 - Multi-mode fiber (550 meters)
 - Single-mode fiber (5 km)
 - CAT-5, Cat-5E, CAT-6, CAT-7 twisted pair (100 meters)
 - The RJ45 stuff

Fun With Physics Ethernet

Ethernet Signal Propagation (approx)

$$\frac{2}{3}c = \frac{2}{3} \times 3 \times 10^8 \frac{m}{sec}$$
$$= 2 \times 10^8 \frac{m}{sec}$$

• From end to end for a 500m cable

$$\frac{500m}{prop} = \frac{500m}{2 \times 10^8 \frac{m}{sec}}$$

= 2.5 \times 10^{-6} sec = 2.5 \mu seconds

• "Bit width" in seconds

$$10Mbps = 10 \times 10^{6} \frac{bits}{sec}$$
$$= 1 \times 10^{7} \frac{bits}{sec} = 1 \times 10^{-7} \frac{secs}{bit}$$

"Bit width" in metres

$$\frac{prop}{width} = 2 \times 10^8 \frac{m}{sec} \times 10^{-7} \frac{sec}{bit} = 20 \frac{m}{bit}$$

Ethernet Repeater

- Hardware device that connects two Ethernet cable segments and makes them appear to be a single cable
- Repeats all packets from one cable to the other and vice versa
- Introduces delay of 1 bit-time
- Called "level 1" interconnect
- Usually called an "Ethernet Hub" these days
 - Can be very inexpensive, \$30 (although hard to find these days)

Ethernet Bridge

- Hardware device that connects two Ethernet cable segments and makes them appear to be a single cable
- Repeats all packets from one cable to the other and vice versa
- Introduces delay of 1 packet-time
- Does not forward collisions or noise
- Does forward all broadcast packets
- Makes multiple Ethernets appear to be a single, large Ethernet
- Called "level 2" interconnect
- Usually called a "switch" these days

Modern Ethernet Switches

- Mixing 10Mb, 100Mb, and 1000Mb network connections requires bridges (switches) instead of repeaters (hubs)
- They're fairly inexpensive
 - 8 port 10/100 Ethernet switch perhaps \$40
 - GigE capable switches are \$10 to \$20 more
 - Most modern switches auto-sense the connections so that you can "daisy chain" them without needing an Ethernet crossover cable or a switch to set
- "Managed Switches" are better
 - You can monitor them
 - Provide statistics for logging and/or debugging

Physical Network Addresses

- Each machine attached to a packet switch network is assigned a unique physical address
- Sender must supply destination address when transmitting a packet
- In most technologies, sender supplies source address as well
- Each technology defines its own address scheme
- Ethernet as an example
 - 48-bit address obtained when device is manufactured
 - All 1s address reserved for broadcast
 - One-half of the addresses reserved for multicast (a restricted form of broadcast); assigned by customer

Ethernet Frame Format

- After Xerox finished the original Ethernet Specifications, the IEEE standardized a slightly different version with a different header format
 - "With careful planning", the two versions can be run on the same wire
- Original Ethernet Specification

	Dest	Source	${ t Frame}$		
Preamble	Addr	Addr	Type	Frame Data	CRC
I	l			368-12000 bits	
8 octets	6 octets	6 octets	2 octets	46-1500 octets	4 octets

• IEEE Ethernet Specification

	Dest	Source						
Pre.	Addr	Addr	Length	DSAP	SSAP	Ctrl	Data	CRC
8	2 or 6	2 or 6	2	1	1	1-2	variable	4
octets	octets	octets	octets	octet	octet	octets		octets

How Adaptive Ethernet Bridge Uses Addresses

- Bridge begins with no knowledge of which machines connect to which wire; it forwards all packets
- Bridge watches source address in packets to form list of which machines reside on each side
- Bridge uses destination address and location list to decide whether to forward packet
- Bridge always forwards broadcast and multicast packets

Another LAN Example FDDI

- Architecture is a "ring" rather than a "bus"
 - Actually 2 rings
- Everything you send eventually comes back to you
- A sender looks at the data coming back to ensure that it wasn't "garbled"
- Originally for Optical Fiber, now also runs on "copper"
- Typically runs at 100 Mbps
- Contention for the wire is handled by a circulating "token"
- To send, a station waits for the token
 - Grab the token
 - Send your data
 - Re-insert the token
 - How does this compare to Ethernet?

FDDI Details

- Self healing
 - Lost tokens are recovered
 - Broken rings are spliced together
- Frame format.
 - 16 bits of Preamble
 - 8 bits of Start Delimiter
 - 8 bits of Frame Control
 - 16 or 48 bits of destination address
 - 16 or 48 bits of source address
 - 0 to 240 bits of routing information
 - 32 bit Frame Check Sequence
 - 4 bits of End Delimiter
 - 12 or more bits of Frame Status
- Maximum frame size is 4500 octets

Example Network Point-to-Point "Network"

- Direct connection between two machines
- Link-level protocol specifies
 - Data link (framing) format
 - Error detection/recovery scheme
- Various transmission media available
 - Twisted Pair, Coaxial Cable, Optical Fiber
 - Microwave/Satellite
 - Infrared
 - Radio Waves

Example Point-to-Point Network SLIP

- Often used between modems across phone lines
- SLIP provides no "addressing", all data is "from the guy at one end and to the guy at the other end"
- Defines two "magic" characters
 - END (decimal 192)
 - ESC (decimal 219)
- To send a packet of information, the sender sends the data followed by END
- What if the data itself contains END?
 - END is "escaped" in the data by sending ESC followed by (decimal 220) instead.
 - ESC is "escaped" in the data by sending ESC followed by (decimal 221) instead

Example Point-to-Point Network Point-To-Point Protocol (PPP)

- Also usually used between modems
- Supports addressing
- Supports multiple data types
 - TCP/IP
 - Appletalk
 - Novell
- Supports authentication
- Many other features

Example WAN ARPANET (1968-1989)

- Original wide area backbone around which TCP/IP was developed
- Initial funding from Defense Advanced Research Project Agency
- In existence 1968-1989
- Leased line interconnection among switching machines called Packet Switched Nodes (PSNs)
- Switches originally called IMPs
- Biconnected (no single point of failure)
- 56K bits/sec line speed

Example WAN NSFNET (1987-1992)

- Funded by National Science Foundation
- Motivation: to connect all scientists and engineers
- Three-level hierarchy
 - Wide area backbone spanning geographic U.S.
 - Many mid-level (regional) networks that attach to backbone
 - Campus networks at lowest level
- 1992 Version
 - Leased connections provided by MCI
 - Switches provided by IBM
 - Reached 1 billion packets per day by November, 1992

Advanced Networks & Services

- National Science Foundation wanted out of the business of supporting networking
- ANS formed as not-for-profit corporation
 - Formed in late 1991 by MERIT, IBM, and MCI
 - MERIT had the operations experience
 - IBM supplied the hardware
 - MCI supplied the wires (optical fiber)
- Owns the current T3-speed (45 Mbps) backbone
- Was considered the first step toward commercialization and privatization of the Internet
- 1993 Version
 - Each leased connection operates at T3 speed
 - Built and owned by Advanced Networks & Services (ANS)

No More Backbone

- Today, the notion of the "backbone network" is largely gone
- "The Internet" is a collection of regional/global network providers that join together at multiple locations
 - ATT
 - Sprint
 - MCI
 - Verizon
 - **—** ...

Example Regional WAN OARNET (was briefly OSCnet)

- Ohio University currently gets its service from a regional ISP called OARNET (OSCnet)
 - Serves most of the Colleges in the state
 - Also serves NASA, etc...
 - Their Third Frontier Network currently consists of several rings run over 10Gbps optical fibers

Oarnet Third Frontier Network

OU's Network Connection

- Our main provider is OARNET (now OSCnet)
- Two logically-separate connections
 - Internet II link to other Ohio campuses
 - Roughly 200 Mbps
 - Internet I link to the rest of the Internet
 - 450 Mbps
- Previously had a backup link for when OARnet was down
- Previously had "peering arrangements" with local access providers, now gone
 - Frognet
 - Time Warner

Common Communication Speeds Digital

- DS-0
 - The base unit of digital transmission capacity.
 - 1 communication channel = 1 simultaneous voice grade equivalent with a communication capacity of 64 thousand bits per second (64Kbps).
- DS-1
 - T1- The equivalent of 24 multiplexed voice grade channels (DS-0s). 1.5Mbps
- DS-2
 - T2 4 T1 channels. 6.3Mbps
- DS-3
 - T3 28 T1 channels. 45Mbps
- DS-4
 - T4 6 T3 channels. 274Mbps

Common Communication Speeds Optical

- OC-1 51.84Mbps: 1 DS-3, 28 DS-1, 672 DS-0
- OC-3 155.52Mbps: 3 DS-3, 84 DS-1, 2016 DS-0
- OC-9 466.56Mbps: 9 DS-3, 252 DS-1, 6048 DS-0
- OC-12 622.08Mbps: 12 DS-3, 336 DS-1, 8064 DS-0
- OC-18 933.12Mbps
- OC-24 1244.16Mbps
- OC-36 1866.24Mbps
- OC-48 2488.32Mbps
- OC-96 4976.64Mbps
- OC-192 9953.28Mbps