Ostermann’s Programming Project Guidelines
(version 4.2 - Mon Mar 31, 2008)

Originality
Anything that you turn into my class is assumed to be solely the result of your own thought processes,
research, trial and error, and creativity. The concept of intellectual property is particularly important
in the sciences and engineering and will be emphasized in this class.

If parts of the program are from someone else (including me), then those parts of the program must
be clearly marked as being not your own work. You may not get credit for parts of a project that
you were supposed to write but got from somebody else.

If you turn in a project including work which is not your own original work and which you did not
clearly mark as being the intellectual property of someone else, then you will fail the course.

Project Submission
All project submissions in my classes will be done electronically. To make this work, you need to do
the following:

e Add the program directory /home/osterman/classbin to the end of your PATH. To accomplish
this:

— If you're running csh, which is the default:
1. Use your favorite editor to edit the file .login in your home directory
2. Make sure that the PATH section reads as follows:

If you want the current directory included in your PATH variable,
uncomment out the next lines
setenv PATH ${PATH}:.

3. Just below that, add the lines

add Dr. Ostermann’s class bin
setenv PATH ${PATH}:/home/osterman/classbin

— If you're smart enough to not be running csh, then you already know how to make the
appropriate changes in whatever shell you're running instead!!

— Note that there are security considerations when adding things to your PATH. I've asked
you to add this to the END of your path. If you’re not comfortable doing that, then you’re
being cautious, and that’s to be commended. I recommend that you look in that directory and
either make an alias to the commands that you need or make a symlink. I don’t recommend
that you copy them, however, as I may need to change them.

e To turn in an assignment, do the following:

— Set the current directory to be the directory containing the project that you want to turn
in (and ONLY that project, please adopt a hierarchical classwork storage structure!!)

— Run the program xyzsubmit, where xyz is replaced by the class number. For example,
if you're in cs444, then you’d run the program 444submit. Note that this program is in
directory /home/osterman/classbin. If the shell responds with “not found”, then you
didn’t add that directory to your path. The arguments to that program are:

PROJNUM The required argument to the program is the project number. For the first
project, you’ll turn it in by typing, for example, 444submit 1

-f The “-f” argument means force, meaning that the program will delete all previous
submissions of the project before submitting the new files.

-1 The “-1” argument means [arge, meaning that the projects whose size exceeds 1MB can
be submitted. This should not normally be necessary.

Turn in requirements

— You MUST use the program make to manage your projects. the xyzsubmit program will
refuse to submit a program without a Makefile
— You must use the gee or g++ compiler and (at least) the options -g -Wall -02 -Werror

— Programs that do not compile will not be graded and will receive zero credit (see -Werror!).

Main program information
The file that contains the subroutine main must contain a banner comment at the top listing at least:

Your name

The class number (542, 444, etc)

The name of the project

A description of what the program does and how it works (at a high level)

A listing of any known bugs/problems in the program

Alternately, this information can be put into a file called README

Programming Style
This is a course in Computer Science, not Computer Programming. A Computer Scientist treats
every programming project as a chance to learn something new and to improve his/her craft. How
the program is written is at least as important as whether or not it works. To encourage the use of
good programming style, all projects in this class must adhere to the following rules:

Numeric constants are not allowed inside expressions, they must be declared as constant types
(or MACROS) in all upper case, as in:

const int MAX_STRING 256;

Each procedure definition must contain at least a one line comment telling what it does.

Blocks of code with a single purpose inside a subroutine should be commented using some
standard format.

Programs must use standard indentation. I'm not going to specify which form to use, that’s a
religious issue. If you're not already comfortable with one style or another, I recommend the
style in the Kernighan and Ritchie book.

If a procedure is longer than 1 or 2 screens (or one printed page), it should probably be broken
up into subroutines.

If the lines of a procedure are indented by more than 4 or 5 “tab stops”, then that probably
means that the “deeply indented” part needs to be rewritten as a subroutine.

Good Advice
Modifying your program to meet these standards just before turning it in defeats the purpose of
these guidelines and is a waste of your time. By this point in your careers, you should be working on
understanding the artistic value of much of what we do and cultivating a sense of pride in your work.
Write all of your programs correctly the first time and then you can reap the debugging rewards as
you test them.

