
Sn̊arkl: Somewhat Practical, Pretty Much
Declarative Verifiable Computing in Haskell

Gordon Stewart(�) 0000-0003-0244-2980, Samuel Merten 0000-0001-8763-0053,
and Logan Leland 0000-0002-1434-386X

Ohio University, Athens, Ohio, USA
{gstewart, sm137907, ll734713}@ohio.edu

Abstract. Verifiable computing (VC) uses cryptography to delegate
computation to untrusted workers. But in most VC schemes, the del-
egated program must first be arithmetized – expressed as a circuit with
multiplication and addition over a finite field. Previous work has com-
piled subsets of languages like C, LLVM, and bespoke assembly to arith-
metic circuits. In this paper, we report on a new DSL for VC, called
Sn̊arkl (“Snorkel”), that supports encodings of language features famil-
iar from functional programming such as products, case analysis, and in-
ductive datatypes. We demonstrate that simple constraint-minimization
techniques are an effective means of optimizing the resulting encodings,
and therefore of generating small circuits.

1 Introduction

It is now possible, using today’s cryptographic techniques and systems, to exe-
cute a computation remotely – on an untrusted computer such as an AWS virtual
machine – while verifying locally without re-execution that the computation was
done correctly. Due to recent advances in the systems and theory behind this
kind of verifiable computing (VC), it is occasionally even practical to delegate a
computation in this way: depending on the system and computation, the total
latency to arithmetize a program (as an arithmetic circuit or set of arithmetic
constraints), set up shared parameters like cryptographic keys, remotely execute
the computation, and locally verify the result is now just a few orders of mag-
nitude higher than the time it would have taken to execute the computation
locally (cf. [16, §5]).

These performance results have not been easily won, however. Since about
2007,1 cryptographers have worked to refine the underlying cryptographic and
complexity-theoretic techniques – probabilistically checkable proofs [1,2], inter-
active proofs [13], efficient arguments systems [6]. Most systems now use variants
of the protocol and representation published by Gennaro, Gentry, Parno, and
Raykova (GGPR) in 2013 [11]. At the same time, researchers in practical cryp-
tography have applied tools from the systems and compilers literatures to build
verifiable computing platforms that are approaching practicality [4,8,21].

1 See Walfish et al.’s ACM survey [22] for a summary of the recent history.



programs P (in C [16,21], LLVM [8])

arithmetic circuits A(P )

(pk, vk) ← K(λ) //key setup (trusted third party)
π ← P(A(P ), pk, input,witness) //prover

{0, 1} ← V(A(P ), vk, input, π) //verifier

front-end arithmetization

cryptographic back-end

Fig. 1: Architecture of Verifiable Computing (VC) Systems

b

×

x (1−b)

×

y

+

out

x1 x2

1

−

b

(1− b)

Fig. 2: An arithmetic circuit implement-
ing (out = if b then x else y). The vari-
able b ranges over {0, 1}, a constraint
that must be encoded separately.

The architectures of the most re-
cent systems follow a common pat-
tern (Figure 1). At the top of the
VC pipeline, a compiler translates
the high-level representation of a pro-
gram – in a language like C or
LLVM – to an equivalent represen-
tation either as an arithmetic circuit
or as a set of constraints that en-
codes the behavior of an arithmetic
circuit. Only terminating programs
can be arithmetized in this way.2 For
example, Figure 2 gives an arithmetic
circuit respresentation of the ex-
pression out = if b then x else y. The
variables b, x, and y are input “wires” to the circuit. The italicized variables x1
and x2 are internal wires that must be instantiated by the proving party. The
gates perform field operations such as multiplication and addition.

In the second phase, a cryptographic backend computes from the circuit
representation three subroutines:

– a key generator K which establishes proving and verification keys to be used
by the prover (remote) and verifier (local);

– a prover P which solves for witness values and constructs a succinct crypto-
graphic proof π that the computation was executed correctly; and

– a verifier V which checks that the proof is valid.

The system is complete when V never rejects proofs generated by P. The system
is secure when, for adversarial but computationally bounded provers P′, the

2 BCGTV [3] approximates potentially nonterminating programs by first translating
to assembly (for the bespoke TinyRAM architecture), then “executing” a bounded
number of steps of the program by arithmetizing the transition relation of the un-
derlying instruction set architecture (ISA).



probability that P′ convinces V to accept a false proof π′ is bounded by negl(λ),
for some negligible function negl and security parameter λ.

In Figure 1, the input to P and V is the assignment of values to the computa-
tion’s input variables provided by the verifying party. The witness is generated
by the prover, and can be understood as a satisfying assignment – given the
inputs – of the internal wires (e.g., x1, x2) of the circuit that results from arith-
metizing P . Some VC systems, such as libsnark [5], support zero-knowledge
computation in the sense that the verifier learns nothing about witness when
verifying π. Verification time after the initial setup phase is usually small – on
the order of milliseconds to seconds, depending on the size of the program input.
Key-generation and proving can be more expensive, depending on the number of
circuit variables and constraints; libsnark reports times in the tens of minutes
for large circuits.

Contributions. Existing VC systems support imperative source languages
like C [16,21] and LLVM IR [8] but not features found in functional languages like
sums, products, user-defined inductive datatypes and case analysis. This paper
reports on the first DSL supporting such features that compiles to a verifiable
computing back-end, libsnark, using tools that apply systematic and general
constraint-minimization techniques to the arithmetic encodings of such programs
in order to generate small circuits. Our primary contributions are threefold:

– We show encodings into arithmetic constraints of language features familiar
from type theory and functional programming: sums and products, inductive
datatypes, and case-analysis (§3). As far as the authors are aware, no other
VC tool has direct encodings for these features.

– We demonstrate that straightforward constraint minimization, when applied
systematically to the arithmetic encodings of such programs, is a viable
method of generating and of solving small circuits. Small circuits lead to
concomitant low key-generation and proving times (§5).

– We implement everything described in the paper as a prototype Haskell DSL,
called Sn̊arkl (“Snorkel”), that is open source and freely available.3

Organization. In Section 2 we introduce the fundamentals of Sn̊arkl by exam-
ple. Section 3 presents the compilation toolchain, and gives arithmetic encodings
of language features like sums, products, inductive datatypes, and case-analysis.
Section 4 is devoted to Sn̊arkl’s constraint-minimization algorithm. We report
in Section 5 on preliminary measurements of SHA3 Keccak-f and other mi-
crobenchmarks and, in Section 6, put Sn̊arkl in its broader research context.

Zero-Knowledge Proof. Sn̊arkl’s verifiable computing backend, libsnark, sup-
ports the construction of zero-knowledge proofs (the π’s of Figure 1), in which
the verifier V learns only the validity of the witness, not the witness itself. While
we do not stress zero-knowledge proof in the remainder of the paper, we point out
here that Sn̊arkl is entirely compatible with zero knowledge as implemented in
libsnark: whether π can be made zero knowledge depends on the cryptographic
backend (libsnark), not the compiler that arithmetizes programs (Sn̊arkl).

3 https://github.com/gstew5/snarkl



Listing 2.1: Syntax of Sn̊arkl’s typed expression language TExp

1 data TExp :: Ty → ∗ → ∗ where
2 TEVar :: TVar ty → TExp ty a
3 TEVal :: Val ty a → TExp ty a
4 TEUnop :: Typeable ty1 ⇒ TUnop ty1 ty → TExp ty1 a → TExp ty a
5 TEBinop :: (Typeable ty1, Typeable ty2) ⇒
6 TOp ty1 ty2 ty → TExp ty1 a → TExp ty2 a → TExp ty a
7 TEIf :: TExp ’TBool a → TExp ty a → TExp ty a → TExp ty a
8 TEAssert :: Typeable ty ⇒ TExp ty a → TExp ty a → TExp ’TUnit a
9 TESeq :: TExp ’TUnit a → TExp ty2 a → TExp ty2 a

10 TEBot :: Typeable ty ⇒ TExp ty a
11 data Ty where
12 TField :: Ty
13 TBool :: Ty
14 TArr :: Ty → Ty
15 TProd :: Ty → Ty → Ty
16 TSum :: Ty → Ty → Ty
17 TMu :: TFunct → Ty
18 TUnit :: Ty deriving Typeable
19 data TFunct where
20 TFConst :: Ty → TFunct
21 TFId :: TFunct
22 TFProd :: TFunct → TFunct → TFunct
23 TFSum :: TFunct → TFunct → TFunct
24 TFComp :: TFunct → TFunct → TFunct deriving Typeable

2 Sn̊arkl by Example

Sn̊arkl programs are embedded in Haskell through the use of GHC’s [12]
RebindableSyntax and DataKinds language extensions. RebindableSyntax co-
opts Haskell’s do-notation for sequencing Sn̊arkl commands. DataKinds is used
to embed Sn̊arkl’s type system into Haskell. As an example, consider the fol-
lowing snippet of Sn̊arkl code.

1 arr ex :: TExp ’TField Rational → Comp ’TField
2 arr ex x = do
3 a ← arr 2
4 forall [0..1] (λ i → set (a,i) x)
5 y ← get (a,0)
6 z ← get (a,1)
7 return $ y + z

Line 3 uses the arr keyword to allocate an array of size 2, bound in the remainder
of the function body to variable a. In line 4, Sn̊arkl’s forall combinator, of type

[b] → (b → Comp ’TUnit) → Comp ’TUnit



initializes a. The function set in the body of the lambda is the standard array
update, with complement get satisfying the usual McCarthy laws. Lines 5 and 6
read twice from a, at indices 0 and 1.

In the type of arr ex, TExp t r is the type of expressions in Sn̊arkl’s typed
intermediate language, with t ranging over Sn̊arkl types and the metavariable r
a Haskell type. Comp is Sn̊arkl’s compilation monad (about which we say more
in Section 3). Higher-level Sn̊arkl code is built using combinators that operate
over and return TExps, in the style of an embedded DSL. The full syntax of the
TExp expression language is given in Listing 2.1. In what follows, we discuss the
relevant points.

Sn̊arkl’s type system is embedded into Haskell using the GADT [23] TExp.
TExp is parameterized by a Sn̊arkl type t, of (data-)kind Ty, and a Haskell
type r (of kind ∗). The type system is mostly standard. TField is the type of
field elements in the underlying field, typically Rational. In expression types
TExp t r, we often omit the r to save space in listings. In each such case, r is
specialized to Rational. The constructor TEBot provides an escape hatch (used
to compile sums and bounded recursion, Section 3). There are no constructors
for the complex types in Ty (TProd, TSum, etc.). Values of these types are built
using higher-level Haskell combinators.

To support user-defined inductive types, the recursive-type constructor TMu
quantifies over a user-defined type functor TFunct. In the signatures of Sn̊arkl’s
(iso-recursive) roll and unroll combinators, we use a Haskell type family Rep

type family Rep (f :: TFunct) (x :: Ty) :: Ty
type instance Rep (’TFConst ty) x = ty
type instance Rep ’TFId x = x
type instance Rep (’TFProd f g) x = ’TProd (Rep f x) (Rep g x) ...

to encode the semantics of these functors. The signatures of roll and unroll are:

unroll :: ... ⇒ TExp (’TMu f) → Comp (Rep f (’TMu f))
roll :: ... ⇒ TExp (Rep f (’TMu f)) → Comp (’TMu f)

Elided in ... are Typeable-instance constraints for type Rep f (’TMu f) and the
promoted4 type f. These constraints, which appear elsewhere in Listing 2.1,
facilitate reflective programming on TExps. For example, it is possible to write
a function var is bool with type Typeable ty⇒ TVar ty → Bool that determines
statically whether a given program variable x is boolean.

More interesting programs are also encodable. Consider the following code,
which implements the type of untyped lambda-calculus terms.

4 The effect of GHC’s DataKinds extension is to implicitly promote datatypes like
TFunct to kinds, and constructors of user-defined datatypes (TFConst, TFId, etc.)
to type constructors. Type constructors that have been promoted in this way are
marked by an initial apostrophe, as in ’TFId.



type TTerm = ’TMu TF
type TF = ’TFSum (’TFConst ’TField) (’TFSum ’TFId (’TFProd ’TFId ’TFId))

In math, the functor TF is F (τ) = TField + τ + τ×τ . A lambda term (in
DeBruijn-style) is either a field element (type TField) encoding a DeBruijn index,
an abstraction with body of type µF , or an application (a pair of lambda terms
µF×µF ). The constructor for application is:

1 app :: TExp TTerm → TExp TTerm → Comp TTerm
2 app t1 t2 = do
3 t ← pair t1 t2
4 t’ ← inr t
5 v ← inr t’
6 roll v

Assuming t1 and t2 are lambda terms (Sn̊arkl expressions of type TTerm),
pair t1 t2 constructs an expression t of type ’TProd TTerm TTerm (line 3). Lines 4
and 5 inject t to an expression v of type ’TField+(TTerm+(TTerm×TTerm)). In
line 6, we roll v as an expression of type ’TMuTF=TTerm.

3 Compiling to R1CS

Encoding a small functional language into Haskell is all well and good. But how
do we go about compiling to arithmetic circuits? Figure 3 provides an overview of
the general strategy. The target language, Rank-1 Constraint Systems (R1CS),
is libsnark’s input specification. At the top of the compiler stack, we elaborate

source Sn̊arkl
programs P
(embedded
in Haskell)

deeply em-
bedded TExps

type-erased Exps

Constraints

Rank-1 Constraint
Systems (R1CS)

elaboration

type erasure

constraint solving (§4)
constraint minimization (§4)

dataflow analysis
variable renumbering

Fig. 3: The Sn̊arkl compiler

Sn̊arkl programs P to the deeply embedded TExp language of Section 2. Then
we erase types, which facilitates later phases, by compiling TExps to a similar
but untyped language Exp. Exps are compiled to a language of Constraints
designed for easy optimization. It is at this Constraints level that we run
most optimizations, including constraint minimization (Section 4) and dataflow



Sn̊arkl Code (from §2)

1 arr ex2 :: Comp ’TField
2 arr ex2 = do
3 x ← fresh input
4 a ← arr 2
5

6 set (a,0) x
7 set (a,1) x
8 y ← get (a,0)
9 z ← get (a,1)

10 return $ y + z

Step-by-Step Elaboration to TExp

// let elaboration environment ρ0 = ∅ in

// freshvar x0; mark x0 as input; let x = TEVar x0 in
// freshloc l0; freshvars a0, a1; let a = l0 in
// let ρ1 = ρ0[(a, 0) 7→ a0][(a, 1) 7→ a1] in
// let ρ2 = ρ1[(a, 0) 7→ x] in
// let ρ3 = ρ2[(a, 1) 7→ x] in
// let y = ρ3[(a, 0)] in
// let z = ρ3[(a, 1)] in
// TEBinop (TOp Add) y z

Fig. 4: Sn̊arkl to TExp

analysis. The minimizer doubles as a constraint solver for generating witness
values (given inputs) to assign to the internal “wires” in the circuit representation
of a computation (the witness of Figure 1).

3.1 Elaboration

Elaboration uses a code-generation state monad Comp that incorporates gensym
for fresh names and a compile-time symbol table that maps “objects” in the
source language (values of nonscalar types such as arrays, products, sums) to
associated constraint variables. As an example, consider the array code we pre-
sented in Section 2, re-listed and slightly modified in the first column of Figure 4.

The main difference is at line 3 where the variable x is now a program input
(an “input wire” in the resulting arithmetic circuit) as opposed to a parameter
of the Haskell function arr ex. Also, the forall that was previously at line 4 has
been unrolled. This function arr ex2 is elaborated by Sn̊arkl to a TExp pack-
age (TExpPkg), which records the total number of variables allocated during
elaboration, the input variables, and the TExp itself:

TExpPkg { allocated vars = 3, input vars = {x0},
texp = TEBinop (TOp Add) (TEVar x0) (TEVar x0) }

The resulting TExp ranges over the single input variable x0 (the two other vari-
ables allocated during elaboration do not appear). The expression returns the
result of doubling the input variable x0, the same behavior as arr ex2.

The elaboration process is explained in Figure 4. The environment ρ : loc×
int → var + loc maps symbolic locations (introduced during elaboration) and
integer offsets to Sn̊arkl program variables and other symbolic locations. The
declaration x ← fresh input on line 3 allocates a new variable TEVar x0 bound
to x in the remainder of the function. In line 4, we “allocate” an array (of field
elements) of size 2. At elaboration, the effect of this command is to:

– generate a fresh symbolic location l0, the base of the array a;
– generate two fresh variables a0 and a1, the array’s initial contents;
– update the elaboration environment ρ to map (a, 0) to a0 and (a, 1) to a1.



The array updates of lines 6 and 7 overwrite ρ to map both (a, 0) and (a, 1) to the
input variable x. The array gets of lines 8 and 9 look up the bindings associated
with a at offsets 0 and 1. The Haskell metavariables a, x, y, and z are used only
during elaboration, and are distinct from the object-language variables x0, a0,
and a1, which may appear in the generated TExp. The location l0 is drawn from
a distinct namespace and does not appear in the elaborated expression.

3.2 Products, Sums, Recursion

Products can be elaborated as if they were heterogeneous two-dimensional ar-
rays. For example, the code fragment do { p ← pair 1.0 2.0; fst pair p } that
builds a pair and projects its first element elaborates to

TESeq (TEAssert (TEVar p0) (TEVal 1.0))
(TESeq (TEAssert (TEVar p1 (TEVal 2.0))) (TEVar p0)).

Here p0 and p1 are variables that stand for the first and second projections of the
pair. Behind the scenes, a location p = l0 was allocated such that ρ[(p, 0)] maps
to p0 and ρ[(p, 1)] maps to p1. TEAssert (TEVar p0) (TEVal 1.0) – asserting that
the variable p0 equals 1.0 – ensures that p0 is resolved, in the eventual rank-1
constraint system, to the value 1.0.

Compiling sums is trickier. Since the target execution model is arithmetic
circuits (specifically, their generalization as the arithmetic constraint language
R1CS), we cannot – when implementing case-analysis – just “jump” to the code
for the left or right of a match on an expression like

e : TExp (’TSum ’TBool TField) Rational.

Whether e was built with inl or inr may depend on an input variable of the
compiled circuit, as in:

do { b ← fresh input; x ← inl false; y ← inr 0.0; z ← if b then x else y;
case sum z (λ b0 → ...) (λ n0 → ...) }

Sn̊arkl’s solution is to elaborate both branches of the case sum and combine
the results, dependent on the value of the input b (not known at compile-time).
To avoid large blowups in the size of the generated code, the compiler performs
constant propagation to eliminate spurious branches whenever possible. When
a conditional cannot be determined statically, the compiler zips (Figure 5) the
branches to the leaves of the syntax tree to ensure that expressions of compound
type (TSum, TProd, etc.) are represented by location expressions at elaboration
time – an invariant that facilitates the compilation of eliminators such as fst pair.

Internally, sums are represented as pairs (b, (e1, e2)) where b is a boolean
expression indicating left or right, e1 is the left-hand expression of the sum (if one
exists) and e2 the right-hand (if one exists). In the constructors inl and inr, the
uninstantiated branch (right for inl, left for inr) is populated by the expression
TEBot, which may assume any type. The elaborator implements a simple static
analysis to track both TEBots and boolean expressions with known values.

Modulo such optimizations, case sum is implemented:



`bτ e1 ./ e2 = e12

`bTUnit e1 ./ e2 = TEVal VUnit
zipUnit

τ ∈ {TField,TBool}
`bτ e1 ./ e2 = TEIf b e1 e2

zipBase

`bτ1 (fst pair e1) ./ (fst pair e2) = p1 `bτ2 (snd pair e1) ./ (snd pair e2) = p2

`bTProd τ1 τ2
e1 ./ e2 = pair p1 p2

zipProd

`bTProd TBool (TProd τ1 τ2)
(rep sum e1) ./ (rep sum e2) = p

`bTSum τ1 τ2
e1 ./ e2 = unrep sum p

zipSum

`bRep f (TMu f) (unroll e1) ./ (unroll e2) = r

`bTMu f e1 ./ e2 = roll r
zipRec

Fig. 5: Type-directed zipping

case sum :: forall τ1 τ2 τ . ... ⇒
(TExp τ1→ Comp τ)→ (TExp τ2→ Comp τ)→ TExp (’TSum τ1 τ2)→ Comp τ

case sum f1 f2 e =
do { let p = rep sum e;

b ← fst pair p; p rest ← snd pair p;
e1 ← fst pair p rest; e2 ← snd pair p rest;
le ← f1 e1; re ← f2 e2;
zip vals τ (not b) le re }

When e = (b, (e1, e2)), neither e1 nor e2 is known to evaluate to TEBot, and the
value of b is not known statically, case sum generates code for the left branch
(f1 e1) and the right branch (f2 e2) and applies the transformation zip vals –
the ./ relation of Figure 5 – to the resulting expressions. Indexing the relation
are the type τ of e1 and e2 and the boolean conditional not b (inl is defined
to let b = false, hence the negation). The ./ relation maps two TExps e1 and
e2 to a result e12 in which the b branch – deciding between e1 and e2 – has
been pushed to the leaves of the syntax tree, enforcing the invariant that TExps
of nonbase-type such as TSum or TProd are represented as symbolic locations
during elaboration. The relation itself is defined by case analysis on the structure
of τ . In the definitions of case sum and ./, the coercions

rep sum :: TExp (’TSum τ1 τ2) → TExp (’TProd ’TBool (’TProd τ1 τ2))
unrep sum :: TExp (’TProd ’TBool (’TProd τ1 τ2)) → TExp (’TSum τ1 τ2)

cast between sums as products (rep sum), and back again (unrep sum).
Sn̊arkl supports recursive functions through the use of a (bounded) fixpoint

combinator fix whose type is:

fix :: ((TExp τ1 → Comp τ2) → (TExp τ1 → Comp τ2)) → TExp τ1 → Comp τ2

At a user-configurable depth5 d the expression fix f e returns TEBot, indicating
delayed error; if the output of the resulting circuit, given user inputs, depends on

5 The recursion bound is necessary to ensure that elaboration terminates.



the TEBot expression (it exceeds the recursion bound – perhaps the user input
is the serialization of a list of size d+ 1), the circuit evaluation will go wrong.

3.3 From TExps to R1CS

Compiling TExps to Rank-1 Constraint Systems is more straightforward, and in
general follows previous work on arithmetizing general-purpose programs. The
main difference is that between TExp and R1CS we employ an intermediate
constraint representation Constraints that is more suitable than R1CS for
optimization. We present R1CS first, then Constraints and the encoding of
select TExps into Constraints. Section 4 shows how to optimize Constraints.

The input specification language of libsnark, Rank-1 Constraint Systems
(R1CS), builds on the QAP arithmetic constraint representation of GGPR [11].
A rank-1 constraint system is a system of constraints on degree-1 polynomials
over a finite field, e.g.:

A ∗ B = C
(2x0 + 3x1) ∗ (−3x1) = 2x0 + 4x1

The variables x0, x1 range over a finite field Fp of prime characteristic p. A
system of such constraints encodes the behavior of an arithmetic circuit (cf.
GGPR [11] for additional details).

Listing 3.1: Sn̊arkl’s representation of Rank-1 Constraint Systems (R1CS)

1 type Assgn a = Map.IntMap a
2 data Poly a where Poly :: Field a ⇒ Assgn a → Poly a
3 data R1C a where R1C :: Field a ⇒ (Poly a, Poly a, Poly a) → R1C a
4 data R1CS a = R1CS {
5 r1cs clauses :: [R1C a], r1cs num vars :: Int,
6 r1cs in vars :: [Var], r1cs out vars :: [Var],
7 r1cs gen witness :: Assgn a → Assgn a }

Sn̊arkl’s representation of R1CS is given in Listing 3.1. An assignment
(line 1, Assgn a) maps variables (type Var = Int) to values of type a. A rank-1
polynomial (line 2) is just an assignment in which a has the operators of a field
and variable −1 is by convention the constant term. A rank-1 constraint (line 3)
is a polynomial constraint A ∗B = C in which A, B, and C are all polynomials.
The R1CS type collects a list of rank-1 constraints, the number of variables
appearing in the constraints, which variables are inputs and outputs, and a
function, r1cs gen witness, that maps input assignments to satisfying witnesses.

Sn̊arkl’s constraint language presents an abstraction layer on top of R1CS,
making it easier to optimize R1CS-style encodings. The main datatype is:

data Constraint a =
CAdd a [(Var,a)]
| CMult (a,Var) (a,Var) (a,Maybe Var)
| CMagic Var [Var] ([Var] → State (SEnv a) Bool).



J e Kout = [CAdd ..., ...]

J EVar x Kout = [CAdd 0 (fromList [(out, 1), (x,−1)]]
J EVal c Kout = [CAdd c (fromList [(out,−1)]]

J EAssert (EVar x1) e2 Kout = J e2 Kx1
J EBinop Or e1 e2 Kout = J e1 Ke1 out ++ J e2 Ke2 out

++ J EBinop Mult (EVar e1 out) (EVar e2 out) Ke12 out

++ J EBinop Sub (EBinop Add (EVar e1 out) (EVar e2 out)) (EVar out) Ke12 out

Fig. 6: TExps to Constraints (excerpts)

The type a is usually specialized to field elements. The additive constraint
CAdd a [(Var, a)] asserts that the linear combination of a constant (of type
a) with the variable–coefficient terms ([(Var, a)]) equals 0. For example, the
constraint CAdd 2 [(x,1), (y,−3)] is 2 + 1x − 3y = 0. Multiplicative constraints
CMult ... encode facts like 2x∗3y = −7z. In general, CMult (c,x) (d,y) (e,Just z)
means cx ∗ dy = ez. When the second element of the third pair is Nothing, the
interpretation is cx ∗ dy = e.

Compiling both additive and multiplicative constraints to R1CS is straight-
forward. For example, the additive constraint CAdd 3 [(y,−5), (z,23)] yields:

R1C (const poly one) (Poly (fromList [(xc,3), (y,−5), (z,23)])) (const poly zero).

The variable xc = −1 is reserved for the polynomial’s constant term. The func-
tion const poly c constructs the constant polynomial equal c. Multiplicative con-
straints are equally straightforward. For example, CMult (3,x) (4,y) (5,Just z)
results in the rank-1 constraint 3x ∗ 4y = 5z.

So-called CMagic constraints are hints to Sn̊arkl’s constraint solver that
encode nondeterministic “advice” – used to resolve the values of variables intro-
duced by the nondeterministic encodings of expressions such as disequality tests
(about which we say more below).

Compiling TExps to constraints follows previous work (e.g., [16,18]), yet some
of the encodings are nonobvious. Consider boolean disjunction in TExps of the
form TEBinop (TOp Or) e1 e2. The encoding – after types have been erased –
is given in Figure 6, along with that of variables, values, and assertions. The
compilation relation J · Kout is indexed by an output variable out that corre-
sponds one-to-one with the output “wire” of the resulting arithmetic circuit,
itself encoded as a list of constraints of type Constraint a. For example, compi-
lation of EVar x, with output variable out, constructs the polynomial constraint
0 + 1∗out + −1x = 0 asserting that out = x. The encoding EVal c is similar.

To compile boolean disjunction EBinop Or e1 e2, we first recursively compile
e1 and e2 – sending their values through fresh output variables e1 out and e2 out.
Then we compile the TExp that encodes the constraint

e1 out+e2 out − out = e1 out∗e2 out.

As long as e1 out, e2 out, and out range over boolean values 0, 1 – a constraint
we encode separately as the additional fact x∗x = x for each boolean variable x
– the equality above is satisfiable iff out = e1 out ∨ e2 out.



Listing 4.1: Constraint minimization

1 simplify rec :: Field a ⇒ ConstraintSet a → State (SEnv a) (ConstraintSet a)
2 simplify rec S = do
3 S′ ← simplify once S
4 if size S′ < size S then simplify rec S′

5 else if S − S′ ⊆ ∅ then return S′ else simplify rec S′

6 where simplify once S =
7 do {S′ ← go ∅ S; remove tauts S′}
8 go W U | size U == 0 = return W
9 go W U | otherwise =

10 let (given, U ′) = deleteFindMin U in do
11 in do given′ ← subst constr given
12 given taut ← is taut given’
13 if given taut then go W U ′

14 else do {learn given′;
15 go (W ∪ {given′}) U ′}

Many of the remaining compilation rules are straightforward (we do not
show them in Figure 6). One exception is disequality testing. Here Sn̊arkl uses
a nondeterministic encoding borrowed from Pinocchio [16] and Setty et al. [18]
that relies on CMagic constraints to resolve the values of a nondeterministic
witness variable. Assume the expression is y = x!=0 ? 1 : 0, which we represent
in C-style syntax. Both x and y are variables. The encoding is, there exists an m
such that both x∗m = y and (1−y)∗x = 0. Since m is not uniquely determined
by the above two facts, we use a CMagic constraint to resolve its value when
solving for the witnesses of Figure 1: if x = 0 then let m = 0. Otherwise, let m
equal the modular multiplicative inverse x−1 of x in the underlying field Fp.

4 Constraint Minimization

Key generation and proving times in VC systems typically depend on the size,
e.g., in number of constraints, of the arithmetization of the source program.
Previous work (e.g., [3,16,8]) uses clever encodings of individual program con-
structs to optimize encoding size but no system we know of applies systematic
constraint minimization.

Why is systematic optimization problematic? If the original source program
is interpreted in order to find satisfying assignments, as in systems such as Gep-
petto [8], then optimizing the constraint system makes it more difficult to map
particular variables and constraints back to program points in the source pro-
gram; minimization may remove variables and constraints entirely. We solve this
problem by having the constraint minimizer perform double duty; for a par-
ticular problem instance with concrete inputs provided by the verifying party,
simply rerun the constraint minimizer with those concrete initial values. The



result, using the constraint minimization algorithm we describe in this section,
is a satisfying assignment for the entire constraint system.

Both constraint minimization and solving happen at the level of Sn̊arkl’s
Constraints intermediate language. The main data structure is an environ-
ment SEnv a = SEnv { eqs :: UnionFind a, solve mode :: SolveMode } that stores
a union-find instance, for mapping variables to their equivalence classes (or to
constants) as new variable equalities are learned during optimization, and a flag
solve mode = UseMagic | JustSimplify that tells the simplifier whether to ignore
CMagic constraints. If solve mode = UseMagic (the simplifier is in solve mode),
magic constraints are used to resolve the values of nondeterministic witness vari-
ables. Otherwise (simplifier mode), the simplifier ignores CMagic constraints.6

The main minimization routines, operating over a set of constraints S, are
given in Listing 4.1. The idea (simplify rec, line 2) is to repeatedly apply the
simplification procedure simplify once (line 7) as long as each application (line 4)
successfully removes at least one constraint from the set S, because it was able
to determine that the constraint was tautological. It is also possible (line 5) that
some constraint has been simplified, yet the total number of constraints remains
the same. In this case, we continue simplifying. If no new constraints are removed
or simplified, we halt with S′.

The function go (beginning at line 8) operates over two sets, a working set
of constraints W and an unselected set U . Originally, all constraints are in U .
At each iteration, the function deletes the smallest constraint from U (under
a particular total order, line 10), simplifies the constraint (line 11) under the
equalities currently recorded in the simplification environment, SEnv, then checks
whether the resulting constraint is tautological (line 13). If it is, the tautological
constraint is removed and go continues to the next iteration, throwing the clause
away (line 13). Otherwise (line 14), we attempt to learn new equalities from the
constraint (between variables and variables, and variables and constants) and
continue (line 15) with the new clause in W .

The function learn (called in line 14) implements just a few simplification
rules. For example, from constraints CAdd −1 [(x,c)] (expressing −1 + cx = 0)
we learn x = c−1 as long as c is invertible. Likewise, from CAdd 0 [(x,c), (y,d)]
(expressing 0 + cx+ dy = 0) we learn x = y as long as c = −d and c is nonzero.
The function subst constr, which substitutes the equalities currently in context
into a constraint, is also straightforward. When applied to, e.g., CAdd constraints
it replaces all variables by their union-find roots, replaces certain variables by
constants, folds constants, and filters out terms with coefficient 0.

5 Measurements

Since Sn̊arkl uses a standard VC backend, our analysis in this section forgoes
a direct evaluation of the practicality of the underlying cryptography7 in favor
of answering the following questions:

6 It would be unsound to rely on these constraints to learn new facts.
7 libsnark was evaluated in [3].



Fixed Matrix Multiply a fixed n × n matrix M (known at compile time) by an n-
length input vector A, resulting in the n-length output vector M · A. Output the
sum of the elements in M ·A. This microbenchmark reproduces the “Fixed Matrix,
Medium” benchmark of Pinocchio [16, §4.3], with parameter n = 600.

Input Matrices Multiply an n× n input matrix M1 by a second n× n input matrix
M2. Output the sum of the elements in M1 ·M2. This microbenchmark reproduces
Pinocchio’s “Two Matrices, Medium” benchmark [16, §4.3] with n = 70.

Keccak-f(800) The main function of SHA3’s “sponge” construction. The lane width
(= 32) is a parameter known at compile time. As input, Keccak-f(800) takes a
3-dimensional array of size 5×5×32 bits. It outputs the exclusive or of the 800-bit
array that results after applying 22 rounds of Keccak-f.

Map List Map the function (λx.x + 1) over a list of field elements of size 50 and
return the list’s last element. The size and contents of the list are circuit inputs.
The generated circuit supports input lists up to size 100 elements.

Fig. 8: Description of the Benchmarks

1. Does Sn̊arkl’s general-purpose constraint minimizer (§4) produce circuits
of comparable size to those encoded by hand in systems like Pinocchio?

2. How much overhead is imposed, over proof generation in libsnark, by using
the constraint minimizer of §4 to generate circuit witnesses?

#Constraints Sn̊arkl Pinocchio
Fixed Matrix 601 600

Input Matrices 347,901 347,900

(a) Constraints per benchmark

(b) Witness generation vs. cryptographic
proof generation and verification latency

Fig. 7: Results

We consider the four benchmarks
described in Figure 8. For bench-
marks that have been implemented in
Pinocchio (Fixed Matrix and In-
put Matrices) we report (Figure 7a)
the number of constraints generated
by Sn̊arkl vs. those in Pinocchio’s
manual encoding, as reported in [16].
In each case, we generate just one ad-
ditional constraint, resulting from the
fact that we return the sum of the re-
sulting matrix in addition to perform-
ing the multiplication (thus prevent-
ing over-optimization of the resulting
circuit by the Sn̊arkl compiler).

For each benchmark, we also mea-
sured (using Citerion [15]; confidence intervals were small) the relative latency of
witness generation as performed by the constraint minimizer of Section 4 versus
cryptographic proof generation and verification in libsnark (Figure 7b). Both
of these procedures must be performed online once per problem instance. The
results here are more mixed. Only one benchmark (Input Matrices) falls below
the line, and therefore has lower witness generation than proof generation and
verification latency. In the remaining benchmarks, the cost of witness genera-
tion exceeds that of proof generation but the difference is usually small. This is
despite the fact that our constraint minimizer has not yet been highly optimized.



6 Related Work

There has been a great deal of work in verifiable computing over the past few
years [3,4,7,8,9,10,16,18,21]. With Pinocchio [16] and its most recent incar-
nation Geppetto [8], researchers at MSR and elsewhere have built VC sys-
tems that incorporate novel techniques like MultiQAPs for sharing state be-
tween reusable circuit components, and energy-saving circuits for reducing cryp-
tographic costs in programs with conditional branches. These new techniques
are complementary to the work we present in this paper. Because Sn̊arkl com-
piles to the clearly defined R1CS interface (Figure 3), future improvements to
libsnark resulting from cross-fertilization by tools such as Pinocchio and Gep-
petto will bring immediate benefit, even without change to the compiler.

In parallel to systems like Pinocchio, Pantry [7] and its successor Buf-
fet [21] (both refinements of previous systems Ginger [18] and Pepper [19])
showed new techniques for efficiently compiling RAM programs. Buffet, for ex-
ample, adapts the RAM abstraction of TinyRAM to the compilation model of
Pantry, resulting in large cryptographic speedups over previous systems. That
said, Buffet’s imperative input language is still a subset of C; while other tools
support other (generally, subsets of) imperative languages like LLVM [8], no tool
we know of directly supports functional programs as in Sn̊arkl.

The work on TinyRAM [3,4], which is implemented as an extension of core
libsnark, represents an interesting third point in the design spectrum: instead
of directly compiling C programs to constraints, TinyRAM modifies gcc to out-
put assembly programs in a small bespoke assembly language, then “executes”
the programs by encoding the semantics of the TinyRAM ISA as arithmetic
constraints. This execution strategy is implementable in Sn̊arkl. In fact, one
immediate goal of future work is the implementation of other kinds of abstract
machines beyond just ISAs – such as interpreters and type-checkers for lambda
calculi. With such tools, it may be possible to recast, e.g., dependent type sys-
tems in a VC mold: the proof that term e has type τ is a VC proof π that the
arithmetization of a type-checking function f applied to e evaluates to Some τ .
Finally, the design of Sn̊arkl’s frontend has benefited from long lines of work on
embedded DSLs (e.g., [14]) and on multi-stage programming (e.g., [20]). Recent
work on specialized type rules for DSLs (e.g., [17]) may provide a method for
improving the reporting of type errors in Sn̊arkl’s embedded type system.

7 Conclusion

Verifiable computing is approaching practicality. But there is still work to do.
In this paper, we report on Sn̊arkl (“Snorkel”), a DSL embedded in Haskell
for functional programming against a verifiable computing backend. We demon-
strate that simple constraint minimization techniques – when applied systemati-
cally to a carefully designed intermediate representation – are an effective means
of generating small circuits. Our DSL and implementation support familiar fea-
tures from functional programming such as sums, products, inductive datatypes,
and case analysis.



References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. JACM, 45(3):501–555, 1998.

2. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of
NP. JACM, 45(1):70–122, 1998.

3. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for
C: Verifying program executions succinctly and in zero knowledge. In CRYPTO.
Springer, 2013.

4. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In USENIX Security, 2014.

5. E. Ben-Sasson et al. The libsnark library. https://github.com/scipr-lab/libsnark.
[Online; accessed 23-9-2015].

6. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, 1988.

7. B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Veri-
fying computations with state. In SOSP, pages 341–357. ACM, 2013.

8. C. Costello et al. Geppetto: Versatile verifiable computation. In Proceedings of the
36th IEEE Symposium on Security and Privacy, volume 15. IEEE, 2014.

9. C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo. ZQL: A Compiler for Privacy-
Preserving Data Processing. In USENIX Security, pages 163–178, 2013.

10. M. Fredrikson and B. Livshits. ZØ: An optimizing distributing zero-knowledge
compiler. In USENIX Security, 2014.

11. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In EUROCRYPT, 2013.

12. GHC Team. The glorious Glasgow Haskell compilation system user’s guide, 2005.
13. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, pages 291–304. ACM, 1985.

14. G. Mainland, G. Morrisett, and M. Welsh. Flask: Staged functional programming
for sensor networks. In ICFP ’08, 2008.

15. B. O’Sullivan. The Criterion library. http://www.serpentine.com/criterion. [On-
line; accessed 23-9-2015].

16. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In Proceedings of the 35th IEEE Symposium on Security
and Privacy, pages 238–252. IEEE, 2013.

17. A. Serrano and J. Hage. Type error diagnosis for embedded dsls by two-stage
specialized type rules. In ESOP, 2016.

18. S. T. Setty et al. Taking Proof-Based Verified Computation a Few Steps Closer to
Practicality. In USENIX Security, 2012.

19. S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument
systems for outsourced computation practical (sometimes). In NDSS, 2012.

20. W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In
PEPM, 1997.

21. R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM
and control flow in verifiable outsourced computation. In NDSS, 2015.

22. M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them.
CACM, 58(2):74–84, 2015.

23. H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatype Constructors. In
POPL, pages 224–235. ACM, 2003.


