
Certified Convergent Perceptron Learning

Timothy Murphy∗ Patrick Gray Gordon Stewart
∗Princeton University Ohio University

Abstract
Frank Rosenblatt invented the Perceptron algorithm in
1957 as part of an early attempt to build “brain models”
– artificial neural networks. In this paper, we apply
tools from symbolic logic – dependent type theory as
implemented in the interactive theorem prover Coq – to
prove that one-layer perceptrons for binary classification
converge when trained on linearly separable datasets
(the Perceptron convergence theorem). We perform
experiments to evaluate the performance of our Coq
Perceptron vs. a C++ implementation and against a
hybrid implementation in which separators learned in
C++ are certified in Coq. We find that by carefully
optimizing the extraction of our Coq perceptron, we
can meet – and occasionally exceed – the performance
of the C++ implementation.

Our work is both proof engineering and intellectual
archaeology: Even classic machine learning algorithms
(and to a lesser degree, termination proofs) are under-
studied in the interactive theorem proving literature. At
the same time, recasting Perceptron and its convergence
proof in the language of 21st century human-assisted
theorem provers may illuminate, for a fresh audience, a
small but interesting corner of the history of ideas.

Keywords machine learning, binary classification, Per-
ceptron, convergence proofs

Categories and Subject Descriptors CR-number [sub-
category]: third-level

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Frank Rosenblatt – who did work in psychology and
neurobiology in addition to computer science – devel-
oped the Perceptron in 1957 (Rosenblatt 1957) as part
of a broader program to “explain the psychological func-
tioning of a brain in terms of known laws of physics
and mathematics. . . .” (Rosenblatt 1962, p. 3). To again
quote (Rosenblatt 1962):

A perceptron is first and foremost a brain model,
not an invention for pattern recognition. . . . its util-
ity is in enabling us to determine the physical
conditions for the emergence of various psycho-
logical properties.

The classic story is that Minsky and Papert’s book
Perceptrons (Minsky and Papert 1969) put a damper on
initial enthusiasm for early neural network models such
as Rosenblatt’s by proving, for example, that one-layer
perceptrons were incapable of learning simple boolean
predicates. But as Minsky and Papert themselves put it
in the prologue to the 1988 edition of their book, their
early negative results were only part of the story:

Our version [of the history] is that the progress
[on learning in network machines] had already
come to a virtual halt because of the lack of
adequate basic theories, and the lessons in this
book provided the field with new momentum. . . .

Minsky and Papert go on to argue that the “symbolist”
paradigm they advocated in those early years of artifi-
cial intelligence in the 1960s and 70s laid the ground-
work for new ways of representing knowledge – that
“connectionism” as embodied by the early network mod-
els of Rosenblatt and others (and even of Minsky him-
self1) was foundering not because Perceptrons drove
researchers away, but because the early connectionist
work lacked firm theoretical foundation.
1 Cf. page ix of the 1988 edition of Minsky and Papert’s book.

Coq Perceptron 1 2016/10/14

In this paper, we step back from the historical de-
bate on “connectionism vs. symbolism” to consider the
Perceptron algorithm in a fresh light: the language of
dependent type theory as implemented in Coq (The Coq
Development Team 2016). We view our work as both
new proof engineering, in the sense that we apply inter-
active theorem proving technology to an understudied
problem space (convergence proofs for learning algo-
rithms), but also as reformulation of an existing body
of knowledge – with the express goal of making the
class of learning procedures the Perceptron represents
(stochastic gradient descent) a bit more palatable to re-
searchers in the CPP community.

To this end, we make the following specific contribu-
tions:

• We implement Perceptron in Coq.
• We prove that our Coq implementation of Perceptron

converges assuming there exists a hyperplane that
correctly classifies the training set. Our proof is
constructive in two senses: First, we use vanilla
Coq with no axioms. Second, under the assumption
that some particular separating hyperplane is known,
our termination proof calculates explicit bounds on
the number of iterations required for Perceptron to
converge.
• We implement a hybrid certifier architecture, in

which a C++ Perceptron oracle is used to generate
separating hyperplanes which are then certified by a
Coq validator.
• Our Coq Perceptron is executable and efficient. We

evaluate (Section 7) its performance, when extracted
to Haskell, on a variety of real and randomly gener-
ated datasets against both a baseline C++ implemen-
tation using arbitrary-precision rational numbers and
against the hybrid certifier architecture supplied with
a fast floating-point C++ oracle. When extraction is
optimized (Section 6), the performance of our Coq
Perceptron is comparable to – and sometimes better
than – that of the C++ arbitrary-precision rational
implementation.

In support of these specific contributions, we first de-
scribe the key ideas underlying the Perceptron algorithm
(Section 2) and its convergence proof (Section 3). In Sec-
tions 4 and 5, we report on our Coq implementation and
convergence proof, and on the hybrid certifier architec-
ture. Sections 6 and 7 describe our extraction procedure

Figure 1. Decision boundary geometry

and present the results of our performance comparison
experiments. Sections 8 and 9 put our work in this paper
in its broader research context with respect to the in-
teractive theorem proving literature. The code and Coq
proofs we describe are open source under a permissive
license and are available online at:

github.com/tm507211/CoqPerceptron.

2. Perceptron
The Perceptron is a supervised learning algorithm that
computes a decision boundary between two classes of
labeled data points. There may be many such decision
boundaries; the goal is to learn a classifier that general-
izes well to unseen data. The data points are represented
as feature vectors x ∈ Rn, where each feature is a nu-
merical delineation of an attribute possibly correlated
with the given class label l ∈ {−1,+1}. A learned
weight model w ∈ Rn and a bias parameter w0 define,
respectively, the orientation and location of the bound-
ary.

To predict class labels y, the Perceptron projects a
given feature vector x onto w and clamps the result as
either positive or negative:

y = sign(wTx + w0) =

{
1, if wTx + w0 ≥ 0
−1, if wTx + w0 < 0

(1)
Figure 1, which we model after (Bishop 2006, Fig.

4.1), represents the decision boundary in two dimen-
sions. Geometrically speaking, the boundary (solid diag-
onal line from top left to bottom right) is a hyperplane
orthogonal to w with displacement from the origin de-
termined by w0. All positively classified x lie on one
side of the hyperplane, while all negatively classified x
lie on the other. This formulation of Perceptron easily
generalizes to arbitrary dimensions.

The Perceptron learns the decision boundary by
minimizing the following error function, known as the

Coq Perceptron 2 2016/10/14

for E epochs or until convergence do
for (x, l) ∈ T do

y = sign(wTx)
if y 6= l then

w = w + xl

Figure 2. Perceptron algorithm

Perceptron criterion:

E(w) = −
∑
x∈M

(wTx + w0)l (2)

M is the set of all x misclassified by w. Since x is
misclassified, the projection of x onto w will have sign
opposite x’s true label l. Multiplying by the correct label
l therefore results in a negative value, forcing the overall
error E(w) positive.

To actually minimize E(w), Perceptron performs
stochastic gradient descent:

wk = w(k−1) −∇wE(w) = w(k−1) + xklk (3)

The weight vector at step k is defined to equal w(k−1)
plus the kth misclassified feature vector xk multiplied
by its class label lk. The overall effect of this update is
to draw the decision boundary closer to the misclassified
vector xk, with the hope that wk is now nearer a decision
boundary for all the xi.

The Perceptron algorithm (summarized in pseu-
docode in Figure 2) will not converge if its training
set is inseparable: at least one feature vector will always
be misclassified. In the pseudocode of Figure 2, T is the
set of labeled training data that guides the Perceptron
toward a decision boundary. One iteration of stochastic
gradient descent over T is rarely sufficient to find a per-
fect separator. Thus the Perceptron may execute many
times before converging. When T is inseparable, or just
not known to be separable, one can force termination by
specifying the maximum number of epochs E.

A data set is linearly separable if there exists a weight
vector w∗ and bias term w∗0 such that all feature vectors
x in the training data T have predicted sign equal to
their true class label l.

Definition 1 (Linear Separability).
Linearly Separable T ,
∃w∗. ∃w∗0. ∀(x, l) ∈ T . l = sign(w∗Tx + w∗0).

3. Perceptron Converges, Informally
As far as we are aware, (Papert 1961) and then (Block
1962) were the first to prove that the Perceptron pro-

Figure 3. AC Bound

cedure converges.2 In this section, we sketch the key
ideas underlying the informal proof upon which our for-
mal proof is based (Section 4). The modern informal
proof is essentially textbook machine learning – see, for
example, (Jaakkola Fall 2006).

Figure 3 gives an intuition for the proof structure.
Assume k is the number of vectors misclassified by the
Perceptron procedure at some point during execution
of the algorithm and let ||wk − w0||2 equal the square
of the Euclidean norm of the weight vector (minus the
initial weight vector w0) at that point.3 The convergence
proof proceeds by first proving that ||wk − w0||2 is
bounded above by a function Ck, for some constant C,
and below by some function Ak2, for some constant A.
(The constants C and A are derived from the training
set T , the initial weight vector w0, and the assumed
separator w∗.) As the Perceptron algorithm proceeds,
the number of misclassifications k approaches C/A.
The overall result follows from this “AC” bound and the
fact that, at each iteration of the outer loop of Figure 2
until convergence, the Perceptron misclassifies at least
one vector in the training set (sending k to at least k+1).

To derive A, observe that wk – the weight vector at
step k – can be rewritten in terms of wk−1 and the most
recently misclassified element xk as:

wk = wk−1 + xk (4)

= w0 + x1 + · · ·+ xk (5)

Subtracting the initial weight vector w0 and multiply-
ing both sides by w∗T, the transpose of the assumed
separating vector w∗, results in

w∗T(wk − w0) = w∗T(x1 + · · ·+ xk) (6)

2 The end of Minsky and Papert’s book (Minsky and Papert 1969)
includes a much more thorough bibliographic survey of the early
literature.
3 Subtracting w0 simplifies the calculation of A and C.

Coq Perceptron 3 2016/10/14

Let a = minx∈T w∗Tx be the minimum vector product
w∗Tx across all vectors x in the training set T . Then

w∗T(wk − w0) ≥ w∗T(x1 + · · ·+ xk) ≥ ak
(7)

||w∗||2||wk − w0|| ≥ |w∗T(wk − w0)|2 ≥ (ak)2

(8)

where 8 follows from 7 and the Cauchy-Schwarz in-
equality. From 8, it’s straightforward to derive that
A = a2

||w∗||2 .
C is derived by a similar set of inequalities:

||wk − w0||2 = ||wk−1 + xk − w0||2

= ||wk−1 − w0||2 + 2(wk−1 − w0)
Txk + ||xk||2 (9)

where 9 follows by foiling the square of the Euclidean
norm. Assuming ∀i ∈ [1, k],wT

i−1xi ≤ 0, which holds
after each xi has been normalized by multiplying it by
its class label, we get that

||wk − w0||2

≤ ||wk−1 − w0||2 − 2(wT
0xk) + ||xk||2 (10)

≤ ||x1||2 + · · ·+ ||xk||2 − 2wT
0 (x2 + · · ·+ xk) (11)

Inequality 10 follows from 9 and from nonpositivity.
Summing over all i = 1 to k gives 11 from 10.

Define M = maxx∈T ||x||2 and µ = minx∈T wT
0x.

Then from inequality 11 we have that

||wk − w0||2 ≤Mk − 2µk = (M − 2µ)k (12)

giving C =M − 2µ.

4. Implementation and Formal Proof
Now we turn to the Coq implementation and formal
convergence proof. In our Coq Perceptron, we make
three small changes to the Section 2 algorithm:

• We use Q- instead of real-valued vectors.
• In our representation of training data sets, we use

bool instead of Q to record class labels +1,−1. Thus
the type system enforces canonicity of the labels.
• We record the bias term w0 by consing it to the front

of the decision boundary w. Thus our w vectors are
of size #features + 1.

Listing 1 gives the basic definitions used by our Percep-
tron implementation and in the statement of the conver-
gence theorem.

Listing 1. Basic Definitions
Definition Qvec , Vector.t Q.

Definition class (i : Q) : bool , Qle bool 0 i.

Definition correct class (i : Q) (l : bool) : bool ,
Bool.eqb l (class i) && negb (Qeq bool i 0).

Definition consb {n : nat} (v : Qvec n) , 1 :: v.

Qvec is just an abbreviation for the Coq standard-library
vector type specialized to Q. The class (or sign) of an
input i : Q (as produced, for example, from an input
vector x by wTx + w0) is determined by checking
whether i is greater than or equal to 0. We say the input
i is correctly classified, according to label l, if l equals
class i and i is nonzero. This second condition forces
our Coq Perceptron to continue working until no feature
vectors lie on the decision boundary.

Listing 2 gives the main definitions.

Listing 2. Coq Perceptron
Fixpoint inner percepton {n : nat}

(T : list (Qvec n∗bool) (w : Qvec n.+1)

: option (Qvec n.+1) ,
match T with nil ⇒ None
| (x, l) :: T′ ⇒

if correct class (Qvec dot w (consb x)) l
then inner perceptron T′ w
else

let wx ,
Qvec plus w (Qvec mult class l (consb x))

in match inner perceptron T′ wx with
| None ⇒ Some wx
| Some w′ ⇒ Some w′

end end.

Fixpoint perceptron {n : nat} {E : nat)
(T : list (Qvec n∗bool)) (w : Qvec n.+1)

: option (Qvec n.+1) ,
match E with 0 ⇒ None
| S E′ ⇒

match inner perceptron T w with
| None ⇒ Some w
| Some w′ ⇒ perceptron E′ T w′

end end.

The fixpoint inner perceptron, which corresponds to
the inner loop in Figure 2, does most of the work. Its re-
cursion parameter, T, is a list of training vectors paired
with their labels. The function iterates through this list,

Coq Perceptron 4 2016/10/14

checking whether each training vector is correctly classi-
fied by the current decision boundary w.4 Upon correct
classification of an x, inner perceptron simply moves
to the next training vector. Upon misclassification, we
let the new decision vector, wx, equal the vector sum
of w and x multiplied by its class label. The function
then continues iterating through the remaining training
samples T′.

Listing 2’s second fixpoint, perceptron, implements
the outer loop of Figure 2. Its recursion parameter is
run-of-the-mill fuel E, a natural number that bounds
the number of inner perceptron epochs. In our formal
convergence proof (Section 4.1), we show that for
any linearly separable training set T, there exists an
E large enough to make perceptron terminate with
Some w′. By the definition of perceptron, convergence
only occurs when the algorithm has settled on a w
that correctly classified all the training vectors in T
(inner perceptron T w = None). Thus soundness (if
perceptron converges, it does so with a vector w′ that
separates the training set T) is trivial.

Listing 3. Linear Separability
Definition correctly classifiedP {n : nat}

: list (Qvec n∗bool) → Qvec n.+1 → Prop ,
λT w ⇒ List.Forall
(λ xl : (Qvec n ∗ bool) ⇒

let (x, l) , xl
in correct class

(Qvec dot w (consb x)) l = true) T.

Definition linearly separable {n : nat}
(T : list (Qvec n∗bool)) : Prop ,
∃w∗ : Qvec n.+1, correctly classifiedP T w∗.

To state the convergence theorem, we first formalize
(Listing 3) what it means for a data set T to be linearly
separable. The binary predicate

correctly classifiedP T w

states that vector w correctly classified training set T
(a list of vector-label pairs). A data set T is linearly
separable when there exists a w∗ such that w∗ correctly
classifies T. The main convergence result is thus:

Theorem 1 (Perceptron Converges).
∀{n:nat} (T : list (Qvec n∗bool)) (w0 : Qvec n.+1),

4 The function consb (Listing 1) conses 1 to x to account for w’s
bias term.

Fixpoint MCE {n:nat} (E:nat)
(T : list (Qvec n∗bool)) (w : Qvec n.+1)

: list (Qvec n∗bool) , . . .

v⇓

Fixpoint perceptron MCE {n:nat} (E:nat)
(T : list (Qvec n∗bool)) (w : Qvec n.+1)

: option (list (Qvec n∗bool) ∗ Qvec n.+1) , . . .

v⇓

Fixpoint perceptron {n : nat} {E : nat)
(T : list (Qvec n∗bool)) (w : Qvec n.+1)

: option (Qvec n.+1) , . . .

Figure 4. Alternative Perceptrons. The symbol v⇓
denotes termination refinement.

linearly separable T ↔
∃(w : Qvec n.+1) (E0 : nat),
∀E : nat, E ≥ E0 →
perceptron E T w0 = Some w.

For all training sets T and initial vectors w0, T is
linearly separable iff there is an E0 such that perceptron
converges (to some separator w) when run on E0 or
greater fuel. This theorem trivially subsumes the case
when E = E0.

4.1 Formal Convergence Proof
What about the formal proof? By the definition of
perceptron, the (←) direction of Theorem 1 is easy.
But as we outlined in Section 3, the (→) direction (con-
vergence) requires a bit more work. In our exposition in
this section, we break the proof into two major parts:

Part I defines two alternative formulations of perceptron
– to expose in the termination proof the feature vec-
tors misclassified during each run – together with
refinement proofs that relate the termination behav-
iors of the alternative perceptrons, while

Part II composes a proof of the “AC” bound (Sec-
tion 3) with the results from Part I to prove the
overall Theorem 1.

We consider each part in turn.

4.1.1 Part I.
The implementation of perceptron in Listing 2 returns
only the final weight vector w′ (or None on no fuel) –

Coq Perceptron 5 2016/10/14

it gives no indication of which training vectors were
misclassified in the process. Yet the informal proof
explicitly bounds the number of misclassifications. To
get a handle on these “misclassified elements” in our
formal proof, we defined two alternative Fixpoints as
depicted in Figure 4. MCE returns a list of the vectors
misclassified by the perceptron algorithm.The middle
fixed point perceptron MCE serves as a bridge between
perceptron and MCE: it returns either None on no fuel
or a pair of the final weight vector and the list of
misclassified elements (as in MCE). We then prove the
following lemmas to relate the convergence behavior of
perceptron, perceptron MCE, and MCE:

Lemma MCE sub perceptron MCE :
∀(n E : nat)
(w0 : Qvec n.+1) (T : list (Qvec n ∗ bool)),

MCE E T w0 = MCE E.+1 T w0 →
perceptron MCE E.+1 T w0

= Some (MCE E T w0,
Qvec sum class w0 (MCE E T w0)).

Lemma perceptron MCE eq perceptron :
∀(n E : nat)
(T : list (Qvec n ∗ bool)) (w0 w : Qvec n.+1),

(∃ M : list (Qvec n ∗ bool),
perceptron MCE E T w0 = Some (M, w)) ↔

perceptron E T w0 = Some w.

The first lemma proves that MCE’s convergence behav-
ior refines that of the second function perceptron MCE.
If at E fuel, MCE E T w0 has reached a fixed point
(the list of misclassified feature vectors is stable re-
gardless how much additional fuel we provide), then
perceptron MCE on E.+1 fuel returns the same list of
misclassified vectors, together with final weight vec-
tor equal the vector sum of w0 and each vector in
MCE E T w0 multiplied by its class label.

The second lemma proves an equitermination prop-
erty (subsuming the refinement shown in Figure 4): the
function perceptron MCE converges to Some (M, w)
on training set T iff perceptron also converges to w.

4.1.2 Part II.
The main difficulty in part II is proving theAC bound on
the length of MCE E T w0, the number of misclassified
feature vectors. Note that the length of MCE E T w0

need not be less than or equal to |T|, the size of the
training set: It’s possible that the same feature vector is

misclassified during multiple iterations of the Percep-
tron outer loop.

Our formal statement of the MCE bounds lemma is:

Lemma 1 (MCE Bounded).
∀{n:nat} (T : list (Qvec n ∗ bool)) (w0 : Qvec n.+1),
linearly separable T →
∃A B C : nat, A 6= 0 ∧ B 6= 0 ∧ C 6= 0 ∧
∀E : nat, A ∗ |MCE E T w0|2
≤ B ∗ Qvec normsq (Qvec sum (MCE E T w0))
≤ C ∗ |MCE E T w0|.

Qvec normsq takes the square of the Euclidean norm
of its input vector, while Qvec sum computes the vector
sum of all the vectors in the provided input list.

Proof. Our proof of the lower bound makes use of the
Cauchy-Schwarz inequality:

Lemma Cauchy Schwarz : ∀{n:nat} (x1 x2 : Qvec n),
Qvec dot x1 x2 ∗ Qvec dot x1 x2 ≤
Qvec normsq x1 ∗ Qvec normsq x2.

The upper bound is a bit easier; in particular, it does not
require even that T is linearly separable. For details, see
the Coq development.

We use Lemma 1 to prove the overall convergence
result (Theorem 1).

Proof of Theorem 1 (Perceptron Convergence). Lemma 1
and the following arithmetic fact

∀xyz : N. x 6= 0 ∧ y 6= 0 ∧ z > y/x ⇒ xz2 > yz

together imply that the maximum length of MCE E T w0

is (C/A).+1, for any E and w0 and for linearly sepa-
rable T. To prove the overall result (Theorem 1), we
compose the bound on the length of MCE E T w0 with
the termination refinements from Part I. For further
details, see the Coq development.

5. Certifier
The Perceptron of Listing 2 is a standalone program
that both computes a separating hyperplane for T and
checks (in its final iteration of inner perceptron) that
the hyperplane correctly separates T.

In some cases, it may be desirable to run an unver-
ified implementation of Perceptron, or even of some
other algorithm for learning linear separators, and then
merely check that the unverified algorithm produced a

Coq Perceptron 6 2016/10/14

valid separator for T. To get soundness guarantees, the
checker, or certifier, should itself be proved correct.

We implemented such a certifier by applying just the
inner loop of the perceptron algorithm to a purported
separator supplied by an oracle, e.g. in C++. In this hy-
brid architecture, we learn less about the termination
behavior of the system (if the oracle is buggy, the pro-
gram may diverge even if the training data are linearly
separable) but still get strong guarantees on soundness
(if the certifier succeeds, the purported separator is valid
for T). In situations in which performance is critical but
termination bugs are acceptable, this hybrid architecture
can give speedups over our fully verified Perceptron, as
Section 7 demonstrates.

To implement the certifier, we use the inner loop of
perceptron MCE of Figure 4 (inner perceptron MCE)
rather than the inner perceptron of Listing 2. Both func-
tions return None when the input weight vector cor-
rectly classifies T. Upon failure, however, the function
inner perceptron MCE additionally returns the list of
elements that were misclassified, which serves as a coun-
terexample to the purported separator.

We demonstrate soundness of the certifier with the
following theorem:

Theorem inner perceptron MCE correctly classified :
∀n (T : list (Qvec n∗bool)) (w : Qvec n.+ 1),

inner perceptron MCE T w = None →
correctly classifiedP T w.

If inner perceptron MCE returns None when applying
the purported separator w to training set T, then w is a
valid separator for T (correctly classifiedP T w).

6. Fuel for the Fire
In Section 4, we proved (Theorem 1) that there exists an
E for which perceptron converges, assuming the train-
ing set T is separated by some w∗. But actually produc-
ing this E, in order to supply it as fuel to our perceptron
program, requires that we first decide whether such a
w∗ exists.

It is possible to define and prove a decision procedure
for linear separability, e.g., by calculating the convex
hulls of the positive and negative labeled instances in T
and checking for intersection.5 However, we have not
yet done so in this work.

5 The work of (Pichardie and Bertot 2001) or of (Brun et al. 2012)
may be helpful if we choose to formalize this algorithm in the future.

Nonetheless, for practical purposes, it is important
when running Perceptron that we supply fuel large
enough not to artificially cause early termination. If
the dataset is large, the requisite fuel might be even
larger, especially when represented as nat rather than
binary Z.

In our extracted code, to avoid having to specify very
large fuel for large datasets, we instead generate “free
fuel” (a trick suggested by an anonymous reviewer)
by extracting perceptron to “fueled perceptron” as fol-
lows:

Definition gas (T : Type) (f : nat → T) : T , f O.

Extract Constant gas ⇒
‘‘(\f → let infiniteGas = S infiniteGas

in f infiniteGas)’’.

Definition fueled perceptron
(n : nat)
(T : list (Qvec n ∗ bool)) (w : Qvec (S n))

: option (Qvec (S n)) ,
gas (λ fuel ⇒ perceptron fuel T w).

The function gas supplies f with fuel 0 but is extracted to
the Haskell function that applies f to infiniteGas, as gen-
erated by the equation let infiniteGas = S infiniteGas.

6.1 Extraction
In the experiments we will describe in Section 7, we find
that judicious use of extraction directives, especially:

• Haskell arbitrary-precision Rationals for Coq Qs
• Haskell lists for Coq Q-vectors

greatly speeds up the Haskell code we extract from our
Coq perceptron. Because extraction directives increase
the size of our trusted computing base, we briefly justify,
in this section, our particular choices.

We extract Coq rationals Q to Haskell arbitrary-
precision Rationals using the following directive:

Extract Inductive Q ⇒ ‘‘Rational’’
[‘‘(\n d → (Data.Ratio.%) n d)’’].

along with others for the various Q operators, e.g.:

Extract Constant Qplus ⇒ ‘‘(Prelude.+)’’.

Such directives do not introduce bugs as long as
Haskell’s Rationals and associated operators over
Rationals correctly implement the Coq Q operators
we use in our Coq perceptron. In order to speed up

Coq Perceptron 7 2016/10/14

operations over Coq positives and Zs, we use similar
Extract Inductive directives to extract both types to
Haskell arbitrary-precision Integers.

Our final optimization extracts Coq vectors (Vector.t,
or Qvec for the specialization of Vector.t to Q) to
Haskell lists, using directives such as:

Extract Inductive Vector.t ⇒
‘‘([])’’ [‘‘[]’’ ‘‘(\a v → a : v)’’]
‘‘(\fNil fCons v →

case v of
[] → fNil ()
(a : v’) → fCons a O v’)’’.

Extract Constant Coq.Vectors.Vector.fold left ⇒
‘‘(\g a l → Prelude.foldl g a l)’’.

Taken together, these directives provide big speedups
over an unoptimized extraction of the same Coq
program, as Section 7 will demonstrate. One obvi-
ous speedup comes from using Haskell’s optimized
arbitrary-precision Rationals, implemented as pairs of
arbitrary-precision Integers. Another is likely from us-
ing standard Haskell lists and list functions, such as
foldl, which a Haskell compiler such as GHC may op-
timize more fully than the vector type and functions
extracted from Coq.

With extraction directives turned on, our toplevel
Haskell perceptron is:

type Qvec = ([]) Rational
. . .

perceptron ::
Nat → Nat →
(([]) ((,) Qvec Prelude.Bool)) →
Qvec →
Option Qvec

perceptron n e t w =
case e of {

O → None;
S e’ →
case inner perceptron n t w of {

Some w’ → perceptron n e’ t w’;
None → Some w}}

fueled perceptron n t w =
gas (\fuel → perceptron n fuel t w)

The function perceptron checks for sufficient fuel e but
always reduces to the S case because of its calling con-
text (fueled perceptron and gas). The type of training
data T is no longer a list of Qvecs but rather a list of

Figure 5. Iris setosa (watercolor credit F. H. Round,
Plate XXIII from (Dykes et al. 1913))

[Rational], with each vector paired to a classification
label of type Bool.

7. Experiments
It is the authors’ hope that theorem provers such as Coq
(or Isabelle/HOL (Nipkow et al. 2002), or HOL4 (Slind
and Norrish 2008), or others – we are ecumenical) will
one day be the IDEs of choice for more than just the
most discerning programmers. But to build that reality,
we must first be honest about the limits of programming
and proving in functional languages with clean proof the-
ories. For example, what is the performance overhead of
a data-centric computation such as our Coq perceptron
(when extracted to Haskell and compiled using ghc)
over a re-implementation of the same algorithm in C++,
using STL arbitrary-precision rational numbers? What
is the overhead against the certifier-style architecture of
Section 5, in which the separator oracle is implemented
by a fast C++ implementation using floating-point num-
bers? We would expect that C++ handily beats Coq in
this domain, but by how much?

In this section, we answer these questions and others,
including:

• Is our Coq perceptron practical for use on real-world
data? (The short answer is “yes” – so far, we’ve had
success on some small- to medium-size data sets.)
• How well does it scale relative to a C++ implementa-

tion of the same algorithm, using arbitrary-precision
rationals instead of Coq Q, in number of features,
number of training vectors, and size of feature coeffi-
cients?
• How well does it scale relative to a certifier-style im-

plementation with a fast C++ floating-point oracle?

To answer these questions, we performed two exper-
iments. In the first (Section 7.1), we ran our various
Perceptron implementations on two real-world data sets
downloaded from the UCI Machine Learning Reposi-

Coq Perceptron 8 2016/10/14

Coq⇒Haskell Coq⇒OptHaskell C++ Rational C++ FP Validator
Iris 0.049s 0.027s 0.039s 0.021s 0.027s

Rocks vs. Mines 95.4h 2.14h 6.56h 48.787s 0.295s

Figure 6. Coq vs. Coq-Optimized vs. arbitrary-precision rational and floating-point C++ on real-world data

tory (Lichman 2013): the classic Iris pattern-recognition
data set (Fisher 1936) and a “Mines vs. Rocks” data set.
Both data sets are known to be linearly separable.

In the second experiment (Section 7.2), we generated
a number of random linearly separable data sets that
differed in number of features, number of training
vectors, and the magnitude of the feature coefficients.
We consider each experiment in turn.

7.1 Real-World Data Sets
The Iris pattern-recognition data set (Fisher 1936) was
collected in the 1930s, primarily by Edgar Ander-
son (Anderson 1935) in Québec’s Gaspé peninsula.
This data set measures 4 features of 3 species of Iris
(Figure 5) and includes 150 training vectors. The fea-
tures are: sepal width, sepal length, petal width, petal
length. To turn the 3-class Iris data set into a binary
classification problem, we labeled the feature vectors
either Iris setosa (the species depicted in Figure 5) or
not Iris setosa (Iris versicolor or Iris virginica).

Our second real-world data set, also drawn from
the UCI Machine Learning Repository, used sonar to
discriminate metal cylinders (mines) from rocks across
60 features. Each feature was reported as a number with
fixed precision between 0.0 and 1.0. While this data set
contained 208 training vectors, it took a considerable
number of iterations to converge on a separator.

We report the total runtime (in seconds) of our ex-
tracted Coq Perceptrons, our arbitrary-precision rational
and floating-point C++ implementations, and our ex-
tracted Coq validation of the C++ output in Figure 6.
We measure two extraction schemes. The first (labeled
Coq⇒Haskell) extracts to Haskell using only the ex-
traction directive associated to gas in Section 6; the
second (Coq⇒OptHaskell) additionally uses the other
extraction directives described in Section 6 – Coq Q to
the arbitrary-precision Haskell Rational type and Coq
Vector.t to Haskell list. Although the “Rocks vs. Mines”
data set is of only moderate size (60 features across
208 instances), it required 275227 epochs to converge;
the Iris data set required 4. While C++ outperforms
Coq⇒Haskell on both data sets, the Coq⇒OptHaskell

outperforms the C++ rational implementation by a factor
of 3 on the “Rocks vs. Mines” dataset. The C++ floating-
point implementation outperformed all other implemen-
tations on both data sets. But while C++ floating-point
returned a correct separator for the Iris data set, the
separator it returned in Rocks vs. Mines misclassified
2 of 208 training vectors, as a result of floating-point
approximation errors.

7.2 Does Coq perceptron Scale?
To experimentally evaluate the asymptotic performance
of our Coq Perceptrons, we generated a number of
linearly separable data sets that differed across number
of feature vectors, number of features, and bounds on
the magnitude of feature coefficients (to evaluate the
overhead of Coq Q). To generate each such data set, we
first randomly initialized a separating weight vector w
(giving a random separating hyperplane), and then drew
feature vectors from a discrete uniform distribution. We
labeled each random feature vector as either positive
or negative by calculating which side of the separating
hyperplane it fell on. To ensure that no feature vectors
fell exactly on the separating hyperplane, we rejected
those vectors whose dot product with w equaled 0.

Figure 7 displays the results. In each subplot, we
show the relative runtime of the “vanilla” unoptimized
Coq, optimized Coq, validator, and C++ floating-point
and arbitrary precision rational Perceptrons on each of
three synthetic data sets that vary in number of vectors
included in the classification problem (Figure 7a), in
number of features per vector (Figure 7b), and in mag-
nitude of feature coefficients (Figure 7c). We normalize
each experiment to a baseline (100x): C++ floating point
followed by validation by the extracted Coq validator.
The plots are in log scale.

Figure 7a displays the results of the vector experi-
ment. As the number of vectors increases, classification
becomes more difficult (many more feature vectors will,
in general, lie close to the decision boundary). We see
that for optimized Coq, C++ over rationals, and vanilla
Coq, runtime increases worse than linearly with the
number of feature vectors (as expected: the number of

Coq Perceptron 9 2016/10/14

(a)

(b)

(c)

Figure 7. Coq vs. optimized Coq vs. rational and
floating-point C++ on three synthetic data sets

epochs required also grew worse than linearly as the
number of vectors increased). Our optimized Coq Per-
ceptron is about one order of magnitude slower than the
C++ floating-point implementation, but is on par with
(and sometimes faster than) the C++ rational implemen-
tation. The vanilla Coq implementation that does not
use the extraction directives of Section 6 is a little less
than one order of magnitude slower yet again than the
optimized Coq implementation.

Although the C++ floating-point implementation
with validation in Coq was fastest among all the im-
plementations we tested, it often generated incorrect
separators. Figure 8 summarizes the misclassification
results for the vectors experiment of Figure 7a. The
%Errors row of the table in Figure 8 lists the percent-
age of randomly generated problem instances of each
class (50 vectors, 100 vectors, etc.) in which the C++
floating-point implementation generated separators that
misclassified at least one feature vector in the train-
ing set. As the number of vectors grows, and thus the
difficulty of the classification problems increases, the
number of misclassifications increases as well. We no-
ticed similar percentages of misclassification errors by
the C++ floating-point implementation in the other two
synthetic experiments.

To validate that our C++ floating-point Perceptron
was generating separating vectors that were at least
approximately correct, we also calculated square co-
sine similarity for each vector with respect to the vec-
tor produced by our Coq implementation (%Similar.
in Figure 8). We see, perhaps counterintuitively, that
as classification difficulty increases, similarity also in-
creases. The reason is, more difficult problem instances
require many more iterations of the Perceptron loop,
which drives the approximate separator produced C++
floating-point closer and closer to the true separator.

Figures 7b and 7c show results of the two additional
experiments. In the first (Figure 7b), we ran each Per-
ceptron on randomly generated data sets with increasing
numbers of features. In general, the presence of more
features makes the linear discrimination problem easier;
we controlled for this by fixing the number of feature
vectors to just 100, which ensured that the number of
epochs was approximately constant across all runs. The
vanilla Coq Perceptron is almost an order of magnitude
slower than the optimized Coq and C++ rational Percep-
trons, and is nearly two orders of magnitude slower than
the C++ floating-point implementation.

Coq Perceptron 10 2016/10/14

#Vectors 50 100 200 400 800 1600 3200
%Errors 60 60 70 100 90 100 100

%Similarity 96.89 98.34 99.14 99.54 99.78 99.90 99.97

Figure 8. Percentage of problem instances (%Errors) in which the C++ floating-point implementation generated
imperfect separators in the vectors experiment of Figure 7a; square cosine similarity of the C++ floating-point
separators (%Similarity) with respect to the vectors produced by our Coq implementation.

In the second additional experiment (Figure 7c), we
generated data sets with ever larger expected feature
values. The x-axis of Figure 7c gives bounds. For ex-
ample, the first set of data points gives runtimes on a
data set with 1000 features, 100 feature vectors, and
feature values q = a/Z, with Z drawn uniformly from
the interval [−100, 100]. Although some rational fea-
tures may not be in reduced form when generated in this
way, we still expect the average size of features to grow
as Z increases. In the plot, the C++ rational and opti-
mized Coq runtimes are approximately constant relative
to the C++ floating-point implementation, whereas the
vanilla Coq implementation, which uses extracted Coq
Q, grows slower relative to C++ floating-point as the
size of feature coefficients increases.

Overall, we were quite surprised by how well our
optimized Coq Perceptron performed relative to the C++
rational implementation of the same algorithm, in some
cases surpassing C++ (by about 3x on the real-world
Rocks vs. Mines data set of Figure 6, for example). Both
the C++ rational and optimized Coq implementations
were about 10x slower than a floating-point implemen-
tation of Perceptron. However, the floating-point Per-
ceptron only rarely produced perfect separators on the
instances we tested. In some machine-learning contexts,
perhaps approximate separators are sufficient. The un-
optimized Coq Perceptron was dog slow compared to
all other implementations. We attribute the slowdown to
the use of user-defined Qs and user-defined collection
types like Coq Vector.t, which a Haskell compiler such
as GHC may not optimize as fully as functions over
standard Haskell lists.

8. Related Work
We are not aware of previous work on mechanized
proof of convergence of learning procedures. Bhat (Bhat
2013), however, has formalized nonconstructive imple-
mentations of classic machine-learning algorithms such
as expectation maximization in a typed DSL embedded
in Coq. A subset of the theorem proving community

has embraced machine-learning methods in the design
and use of theorem provers themselves (cf. the work
on ML4PG (Komendantskaya et al. 2012) for Coq or
ACL2(ml) (Heras et al. 2013)).

There is more work on termination. As is well known,
theorem provers based on dependent type theory such
as Coq and Agda (Norell 2007) require for consistency
that all recursive functions be total. Coq uses syntactic
guardedness checks whereas provers like Agda now
incorporate more compositional type-based techniques
such as Abel’s sized types (Abel 2004). There are other
ways to prove termination, of course, such as Coq’s
Program Fixpoint and Function features, or through
direct use of Coq Fix. These latter features typically
require that the user prove a well-founded order over one
of the recursive function’s arguments (and do not work
well when the function, such as our Coq perceptron,
is total on only a subet of inputs). The termination
argument might be more sophisticated and rely on,
e.g., well-quasi-orders (Vytiniotis et al. 2012). In the
automated theorem proving literature, researchers have
had success proving termination of nontrivial programs
automatically (e.g., (Cook et al. 2006)).

Extending our Q-valued Coq perceptron to use
floating-point numbers, following work on floating-
point verification in Coq such as Flocq (Boldo and
Melquiond 2011) and (Ramananandro et al. 2016), is
an interesting next step. Nevertheless, many of the addi-
tional research challenges are orthogonal to our results
so far. For one, analyzing the behavior of learning al-
gorithms in limited-precision environments is still an
active topic in machine learning (cf. (Gupta et al. 2015)
for some recent results and a short survey). Nor do
we know of any paper-and-pencil Perceptron conver-
gence proof that allows for approximation errors due to
floating-point computation.

Grégoire, Bertot, and others (Bertot 2015; Grégoire
and Théry 2006) have applied theorem provers such
as Coq to computationally intensive numerical algo-
rithms, e.g., computing proved-correct approximations

Coq Perceptron 11 2016/10/14

of π to a million digits. We have done initial experiments
with Grégoire and Théry’s BigZ/BigQ library (used in
both (Bertot 2015) and (Grégoire and Théry 2006)), in
the hope that it might speed up our vanilla Coq Percep-
tron of Section 7. In initial tests, we’ve seen a slight
speedup when switching to BigQ (about 1.6×) with
vm compute in Coq but a slowdown in the extracted
OCaml, over 1000 iterations of the inner loop of Percep-
tron on vectors of size 2000. The reason is, perhaps, that
the representation of Z in Grégoire and Théry’s BigZ
was optimized for very large integers and for operations
like square root, which is not used by the Perceptron
inner loop. In fact, we noticed that we could drive the
relative speedup of BigQ higher (under vm compute)
by increasing the size of coefficients in the test vectors.

9. Conclusion
This paper presents, as far as we are aware, the first me-
chanically verified proof of the Perceptron Convergence
Theorem. More broadly, our proof is a case-study ap-
plication of ITP technology to an understudied domain:
proving termination of learning procedures. We hope
our work spurs researchers to consider other challenging
problems in the verification of machine-learning meth-
ods, such as (for instance) asymptotic convergence of
SVM training algorithms. At the same time, there is still
work to do to make the Coq implementations of such
algorithms usable at scale.

References
A. Abel. Termination Checking with Types. ITA, 2004.
E. Anderson. The Irises of the Gaspé Peninsula. Bulletin of

the American Iris Society, 59:2–5, 1935.
Y. Bertot. Fixed precision patterns for the formal verification

of mathematical constant approximations. In Proceedings
of the 2015 Conference on Certified Programs and Proofs,
pages 147–155. ACM, 2015.

S. Bhat. Syntactic foundations for machine learning. PhD
thesis, Georgia Institute of Technology, 2013.

C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

H.-D. Block. The Perceptron: A Model for Brain Functioning.
I. Reviews of Modern Physics, 34(1):123, 1962.

S. Boldo and G. Melquiond. Flocq: A unified library for
proving floating-point algorithms in Coq. In Computer
Arithmetic (ARITH), 2011 20th IEEE Symposium on, pages
243–252. IEEE, 2011.

C. Brun, J.-F. Dufourd, and N. Magaud. Formal Proof in
Coq and Derivation of an Imperative Program to Compute

Convex Hulls. In Aut. Deduction in Geom. 2012.
B. Cook, A. Podelski, and A. Rybalchenko. Termination

Proofs for Systems Code. In PLDI, 2006.
W. R. Dykes et al. The Genus Iris. Cambridge, 1913.
R. A. Fisher. The Use of Multiple Measurements in Taxo-

nomic Problems. Annals of Eugenics, 7(2):179–188, 1936.
B. Grégoire and L. Théry. A purely functional library for

modular arithmetic and its application to certifying large
prime numbers. In International Joint Conference on
Automated Reasoning, pages 423–437. Springer, 2006.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.
Deep learning with limited numerical precision. CoRR,
abs/1502.02551, 392, 2015.

J. Heras, E. Komendantskaya, M. Johansson, and E. Maclean.
Proof-pattern Recognition and Lemma Discovery in ACL2.
In LPAR, 2013.

T. Jaakkola. Course Materials for 6.867 Machine Learn-
ing. MIT OpenCourseWare (http://ocw.mit.
edu/), Massachusetts Institute of Technology, Fall 2006.

E. Komendantskaya, J. Heras, and G. Grov. Machine Learn-
ing in Proof General: Interfacing Interfaces. arXiv preprint
arXiv:1212.3618, 2012.

M. Lichman. UCI Machine Learning Repository, 2013. URL
http://archive.ics.uci.edu/ml.

M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.
T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A

Proof Assistant for Higher-Order Logic. Springer, 2002.
U. Norell. Towards a Practical Programming Language Based

on Dependent Type Theory, 2007.
S. Papert. Some mathematical models of learning. In Pro-

ceedings of the Fourth London Symposium on Information
Theory, 1961.

D. Pichardie and Y. Bertot. Formalizing convex hull algo-
rithms. In International Conference on Theorem Proving
in Higher Order Logics, pages 346–361. Springer, 2001.

T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin.
A unified coq framework for verifying c programs with
floating-point computations. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and
Proofs, pages 15–26. ACM, 2016.

F. Rosenblatt. The Perceptron – A Perceiving and Recog-
nizing Automaton. Technical Report 85-460-1, Cornell
Aeronautical Laboratory, 1957.

F. Rosenblatt. Principles of Neurodynamics; Perceptrons and
the Theory of Brain Mechanisms. Spartan Books, 1962.

K. Slind and M. Norrish. A Brief Overview of HOL4. In
TPHOLs. 2008.

The Coq Development Team. The Coq Proof Assistant.
https://coq.inria.fr/, 2016. [Online; accessed
2-19-2016].

D. Vytiniotis, T. Coquand, and D. Wahlstedt. Stop When You
Are Almost-Full. In ITP. 2012.

Coq Perceptron 12 2016/10/14

