Verified Learning Without Regret

A Mechanized Proof of the
Multiplicative Weights Update Algorithm

Gordon Stewart
Assistant Professor, EECS
Ohio University

Sam Merten
(PhD)

Alex Bagnall

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIVERSITY

Software Is Hard!

In 2014 alone...

* April 2014: HeartBleed OpenSSL bug
* buffer overread due to missing bounds check
* 17% of servers running TLS affected

* September2014: Shellshock #i/bin/bash
 Bash — unintended command execution .
e undiscovered for 25 years (!)

* October 2014: POODLE
e TLS: for interoperability, fall back to SSL 3.0
e ...exposing a padding oracle attack

2000s:

Toyota Unintended Acceleration
* lives lost...probably due to software
e S1.2b settlement

What Do We Do About It?

Expressivity HOL

Interactive Theorem Prover

Interactive
Theorem Proving \)

W

NuSMV —
Aboiut CBMC
Software
Model Checking
SPARK Toolset MY WEAPON OF CHOICE

Static Analysis

Type Systems Astrée
'Fe +e:1

User Interaction

Interactive Theorem Proving

SPECIFICATION

VxVP3z....
Dependent Type
Theory

4

N

-

proof certificate

machine-checked Coq Proof /
= S

Checker

N

Def f (x:t)..

Defg (x:t) ...
/4

PROGRAM UNDER PROOF

. J

.‘)

The Coq Proof Assistant y
|

http://coq.inria.fr

Yes©

No®

Trusted Computing Base

Which of these pieces do we need to trust?

SPECIFICATION

VxVP3z....
Dependent Type

Theory

Yes@

machine-checked Coq Proof
proof certificate Checker

No®
o

Def f (x:t)..

Defg (x:t) ...
/74

PROGRAM UNDER PROOF

)
, a

The Coq Proof Assistant & (;)
—

http://coq.inria.fr

Theorem Proving In Practice

@JState COContext P®MGoal & Retract < Undo MNext ¥ Use PdGoto [BF flhHome LCFind @ Info 8" Command

Hypothesis (HAgtO : 0 < A).

(** The bound is proved assuming there exist
real numbers [A] and [B] such that for any state [t],
[Phi t] is bounded on the left by
[Cost t / A] and bounded on the right by [B * Cost t]. *)
Hypothesis AB_bound_Phi :
forall t: sT, Costt/A <= Phit <= B * Cost t.

(** Under the conditions stated above, the
Price of Stability of any potential game is
at most [A * B]. (For games in which the
PNE is unique, this bound gives a bound on
the Price of Anarchy as well.) *)
Lemma PoS_bounded (t0 : sT) (PNE_tO : PNE t0) :
PoS t0 <= A * B.
Proof.
set (tN := Phi_minimizer t0).]

generalize (minimal_Phi_minimizer t0); move/forallP=> HtN.

case: (andP (AB_bound_Phi tN))=> H3 H4; rewrite /PoS.
set (tStar := arg_min optimal Cost t0).

move: (HtN tStar)=> H5.

case: (andP (AB_bound_Phi tStar))=> H6 H7.

rewrite ler_pdivr_mulr; last by apply: Cost_pos.

apply: ler_trans.

PROOF SCRIPT

Used to constructindependently
checkable proof object

1 subgoal, subgoal 1 (ID 54)

A\ Prooftree O Restart T Help ' ‘
»/
r
T : game :

X0 : Moveable T o
X : Potential
Cost _pos : forall t : {ffun 'l (numplayers T) -> T}, 0 < Cost t
A, B :rty
HAgtO: 0 < A
AB bound Phi : forall t: {ffun'l (numplayersT) -> T},
Costt/A<=Phit<=B*Costt
to : {ffun'l_(numplayers T) -> T}
PNE tO : PNE tO
tN := Phi_minimizer t0
: finfun_of finType (ordinal_finType (numplayers T)) T

PoSt0O <=A*B

PROOF WINDOW

e currentproofstate
* including hypotheses & goals

MULTIPLICATIVE WEIGHTS
UPDATE (MWU)

The Setting

Learning on-line, in uncertain environments
(For the remainder, I'll assume costs in range [0, 1].)

=] S ON IQ
coss 05 | 01 02 | 02

Round 1: AGENT pays 0.2

scions | A Q A Y
Costs m 01

Round 2: AGENT pays 0.7

AGENT pays 0.9 total ENVIRONMENT

Regret

A learning algorithm is bounded regret if it has
constant expected cost wrt. the best fixed action, as
the number of iterations T — oo,

Regret(A) = E[Cio (A)] — mgn Ctor(a)

actions [l * O A AGENT pays 0.9 total

Costsff 05 | 01 | 02 | 02 ; i
Round 1: AGENT pays 2 tot(Q) =0.3

Regret =0.9-0.3 = 0.6
ncions ISk @IVAN
Costs| 00 | 07 | 01 | 02

Round 2: AGENT pays 0.7

Why (Verify) Regret?

Bounded-regretalgorithms: natural distributed
execution semantics yielding approximate equilibria

MACHINE-VERIFIED WHOLE-SYSTEM
PERFORMANCE GUARANTEES

AGENT [: Regret At Most €

AGENT 2: Regret At Most €

AGENT N: Regret At Most €

e-approximate CCE
DISTRIBUTED ROUTING GAME ‘ APPROXIMATES

optimal configuration

The MWU Algorithm

* Associate to each action a weight w(a)

* Choose actions by drawing from the distribution

w(a)
2pw(b)

p(a) =

* Update weights according to the followingrule
w*(a) =w'(a) * (1 —e*c'(a))

PARAMETER ¢ € (0, %]
MORE -> LESS EXPLORATION

A Rose By Any Other Name...

“Combining Expert Advice”

Winnow
— an algorithm for learning linear classifiers
— |Littlestone ‘88]

Weighted Majority Hedging
— Exponential update rule: |
witl(a) = wi(a) * (1 — €€ @)

AdaBoost / Boosting
— |Freund and Schapire ‘97]

Round 1: AGENT pays 0.2

mmml

2
Actions * O A p(i%)=w (Sj.Si)=O.27

wi[055 a5 o5 0o | RANCETTORICEIRLIC)

Round 2: AGENT pays 0.7

ENVIRONMENT

* Q A p(i%hwz(?s%):o.n

mml

Round 2: AGENT pays 0.7

- — 3
Actions _-’ * Q A p(d (3.04)= 0.25
v [Lors \osz Jo¥rasy_
Costs3 mmmm. %PENALIZED

Round 3: AGENT pays 0.1

ENVIRONMENT

E=§

Actions * OA p(

Actions

w

Costsio| 01 | 03 | 02 | 05

Round 10: AGENT pays 0.2

ENVIRONMENT

MWU Is Bounded Regret

Theorem: MWU is bounded regret.

_ In|A
(E[Ctoe MWU)] —minCype(a)) /T < e+ ELT
a

\ Y] |\ Y l \
EXPECTED TOTAL COST OF BEST FIXED

COST OF MWU ACTION NUMBER OF SIZE OF
STEPS ACTION
SPACE

Proof: Potential function I'* = ¥, w'(a)

Corollary:

c * In|A]| . 1
StepS fo aChleve € ; per-step regret.

€

PART I

 Theorem Proving

« MWU By Example
 Bounded-Regret Learning & Why
* MWU Is Bounded Regret

PART II
* Formalizing MWU
* Verifying Regret

VERIFIED MWU

MWU Formalized

Core Files
spec proof
349 754
738 932
370 831
1457 2517
Auxiliary Files
spec proof
269 1062
75 3
110 80
60 109
60 75
42 475
616 1804

comments
31

75

69

175

comments
17

1

5

11

1

28

63

—

The Coq Proof Assistant

weights.v
weightslang.v
weightsextract.v
total

numerics.v
strings.v
dist.v
extrema.v
bigops.v
neps_exp_le.v
total

TOTAL:
6632 LOC

Theorem: MWU Is Bounded Regret

Formal:

Notation astar:=(best_action a0 cs).
Notation OPT :=(\sum_(c <- cs) c astar).
Notation OPTR:=(rat_to_ R OPT).

... more definitions and notations ...

Lemma perstep_weights_noregret :
((expCostsR — OPTR) / T <= epsR + 1n size_A / (epsR *x T))%R.

Informal:

(E[Cror (MWU)] — m;n Ceor(a)) /T < €+ l

n|A
eT

\ Y] |\ Y l \
EXPECTED TOTAL COST OF BEST FIXED

COST OF MWU ACTION NUMBER OF SIZE OF
STEPS ACTION

SPACE

A Hierarchy of Refinements

High-Level Functional Specification

Definition update_weights (w:weights) (c: costs) 1 weights :=
finfun (fun a : A =>w a *x (1 - eps x c a)

A"ﬁﬂﬂﬂNES

MWU DSL _ _
Binary Arith. Operations Operational Semantics
b ri=+ | - | * |—C,O'$C',0"
Expressions
I D G ——
| eps REFINES
C lde b e | . Fixpoint interp (c:com A.t) (s:cstate)
ommands : option cstate := match c with .. end.
c ::= skip
| update f | .. Executable Interpreter

Even moderate-size proof developments (just like moderate-
size software developments!) benefit from abstraction

Update Weights

Definition update_ weights (w:weights) (c:costs) : weights :=
finfun (fun a : A =>w a *x (1 - eps *x c a)).

A'.WHQWNES

Definition update_weights (f : A.t —> expr A.t) (s : cstate)
: option (M.t Q) :=
M.fold

(fun a _ acc => Data Refinement
match acc with _
| None => None weights = A.t —> rat

| Some acc' =>

match evalc (f a) s with tREFII\E
| None => None Sweights s .
| Some q =>

match @ ?= q with
| Lt => Some (M.add a (Qred q) acc')
= N . .
ené gnd>en3?e Efficient RBTree
(SWeights s)
(Some (M.empty Q)).

rc¢q
X
X

}_

A

Q

X O

e

STCrs gé
(U

V1)

(4 4

Simplified distributed e

routing game with

5 players
50 iterations
mean and std. dev.

over 10 trials

1
€ =-
4

)

EXPERIMENTAL REGRET; ROUTING GAME
ATTIATErr T T L

| -~ REGRET BOUND
. ® ® Mwu COST
1' — OPTMAL COST
+ VERIFIEDPER-STEP ¢ @ "W REGRET
+ REGRET BOUND
=IIIZ:3:—77-:—- T
1= 0000 Y Y Y v v -
0%%::T%_;;?%?%22222222.....33;333??8???5§!3335655b
| &l T TTT400Tol [TITTIo7] —oTr T T -
N $oi082e00tt ot 2eqees0sle T oT st o ToTTTTo-T1 T 7T
v Llll oALAL L Il_i'l"ﬂ"/?iﬂl“ﬁ\i/""?.l?’ 1
Nt | - T W =¥ N D M—
Client #5
LD LR RRRRNNIIILLLRIRNN
1 25 50
#TERATIONS

Extensions, Connections

Bandit Model

— revealing cost of all actions at each step imposes high
communication overhead

— assume, instead, only chosen action’s cost is revealed

— slightly more complex algorithms, slightly worse
bounds, but perhaps faster in practice?

Linear Programming

— Verified MWU as a verified approximate LP solver!
AdaBoost [Freund & Schapire ‘97]

[Aroraetal., ‘12]

— a treasure trove of additional connections!

Conclusion

Verified Multiplicative Weights Update:

— Machine-verifiedimplementation of a simple yet powerful
algorithm for “combining expert advice”

— Proofstrategy: layered
program refinements, from executable
MWU to high-level specification

Short/Medium Term Plans:
— From bounded regret to STCy

whole-system performance guarantees

— with applications to distributed systems (e.g,,
distributed routing, load balancing, etc.)

Thank Youl!

QUESTIONS?

References

[Arora et al., ‘12]: The Multiplicative Weights Update Method:
A Meta-Algorithmand Applications. Theory of Computing,
Volume 8 (2012), pp. 121-164.

[Freund & Schapire ‘97]: A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. Journal of
Comp. and System Sci. 55, 119-139 (1997).

[Littlestone, '88]: Learning quickly when irrelevant attributes

abound: A new linear-threshold algorithm. Machine Learning
2.4 (1988): pp. 285-318.

