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Software Is Hard!

In 2014 alone...

* April 2014: HeartBleed OpenSSL bug
* buffer overread due to missing bounds check
* 17% of servers running TLS affected

* September2014: Shellshock #i/bin/bash
 Bash — unintended command execution .
e undiscovered for 25 years (!)

* October 2014: POODLE
e TLS: for interoperability, fall back to SSL 3.0
e ...exposing a padding oracle attack

2000s:

Toyota Unintended Acceleration
* lives lost...probably due to software
e S1.2b settlement




What Do We Do About It?

Expressivity HOL

Interactive Theorem Prover
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Interactive Theorem Proving
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Trusted Computing Base

Which of these pieces do we need to trust?
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Theorem Proving In Practice

@JState COContext P®MGoal & Retract < Undo MNext ¥ Use PdGoto [BF flhHome LCFind @ Info 8" Command

Hypothesis (HAgtO : 0 < A).

(** The bound is proved assuming there exist
real numbers [A] and [B] such that for any state [t],
[Phi t] is bounded on the left by
[Cost t / A] and bounded on the right by [B * Cost t]. *)
Hypothesis AB_bound_Phi :
forall t: sT, Costt/A <= Phit <= B * Cost t.

(** Under the conditions stated above, the
Price of Stability of any potential game is
at most [A * B]. (For games in which the
PNE is unique, this bound gives a bound on
the Price of Anarchy as well.) *)
Lemma PoS_bounded (t0 : sT) (PNE_tO : PNE t0) :
PoS t0 <= A * B.
Proof.
set (tN := Phi_minimizer t0).]

generalize (minimal_Phi_minimizer t0); move/forallP=> HtN.

case: (andP (AB_bound_Phi tN))=> H3 H4; rewrite /PoS.
set (tStar := arg_min optimal Cost t0).

move: (HtN tStar)=> H5.

case: (andP (AB_bound_Phi tStar))=> H6 H7.

rewrite ler_pdivr_mulr; last by apply: Cost_pos.

apply: ler_trans.

PROOF SCRIPT

Used to constructindependently
checkable proof object

1 subgoal, subgoal 1 (ID 54)

A\ Prooftree O Restart T Help ' ‘
»/
r
T : game :

X0 : Moveable T o
X : Potential
Cost _pos : forall t : {ffun 'l (numplayers T) -> T}, 0 < Cost t
A, B :rty
HAgtO: 0 < A
AB bound Phi : forall t: {ffun'l (numplayersT) -> T},
Costt/A<=Phit<=B*Costt
to : {ffun'l_(numplayers T) -> T}
PNE tO : PNE tO
tN := Phi_minimizer t0
: finfun_of finType (ordinal_finType (numplayers T)) T

PoSt0O <=A*B

PROOF WINDOW

e currentproofstate
* including hypotheses & goals



MULTIPLICATIVE WEIGHTS
UPDATE (MWU)



The Setting

Learning on-line, in uncertain environments
(For the remainder, I'll assume costs in range [0, 1].)
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Regret

A learning algorithm is bounded regret if it has
constant expected cost wrt. the best fixed action, as
the number of iterations T — oo,

Regret(A) = E[Cio (A)] — mgn Ctor(a)

actions [l * O A AGENT pays 0.9 total

Costsff 05 | 01 | 02 | 02 ; i
Round 1: AGENT pays 2 tot(Q ) =0.3

Regret =0.9-0.3 = 0.6
ncions ISk @IVAN
Costs| 00 | 07 | 01 | 02

Round 2: AGENT pays 0.7




Why (Verify) Regret?

Bounded-regretalgorithms: natural distributed
execution semantics yielding approximate equilibria

MACHINE-VERIFIED WHOLE-SYSTEM
PERFORMANCE GUARANTEES

AGENT [: Regret At Most €

AGENT 2: Regret At Most €

AGENT N: Regret At Most €

e-approximate CCE
DISTRIBUTED ROUTING GAME ‘ APPROXIMATES

optimal configuration



The MWU Algorithm

* Associate to each action a weight w(a)

* Choose actions by drawing from the distribution

w(a)
2pw(b)

p(a) =

* Update weights according to the followingrule
w*(a) =w'(a) * (1 —e*c'(a))

PARAMETER ¢ € (0, %]
MORE -> LESS EXPLORATION



A Rose By Any Other Name...

“Combining Expert Advice”

Winnow
— an algorithm for learning linear classifiers
— |Littlestone ‘88]

Weighted Majority Hedging
— Exponential update rule: |
witl(a) = wi(a) * (1 — €€ @)

AdaBoost / Boosting
— |Freund and Schapire ‘97]
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MWU Is Bounded Regret

Theorem: MWU is bounded regret.

_ In|A
(E[Ctoe MWU)] —minCype(a)) /T < e+ ELT
a

\ Y ] |\ Y l \
EXPECTED TOTAL COST OF BEST FIXED

COST OF MWU ACTION NUMBER OF SIZE OF
STEPS ACTION
SPACE

Proof: Potential function I'* = ¥, w'(a)

Corollary:

c * In|A]| . 1
StepS fo aChleve € ; per-step regret.

€



PART I

 Theorem Proving

« MWU By Example
 Bounded-Regret Learning & Why
* MWU Is Bounded Regret

PART II
* Formalizing MWU
* Verifying Regret

VERIFIED MWU



MWU Formalized

Core Files
spec proof
349 754
738 932
370 831
1457 2517
Auxiliary Files
spec proof
269 1062
75 3
110 80
60 109
60 75
42 475
616 1804

comments
31

75

69

175

comments
17

1

5

11

1

28

63

—

The Coq Proof Assistant

weights.v
weightslang.v
weightsextract.v
total

numerics.v
strings.v
dist.v
extrema.v
bigops.v
neps_exp_le.v
total

TOTAL:
6632 LOC



Theorem: MWU Is Bounded Regret

Formal:

Notation astar:=(best_action a0 cs).
Notation OPT :=(\sum_(c <- cs) c astar).
Notation OPTR:=(rat_to_ R OPT).

... more definitions and notations ...

Lemma perstep_weights_noregret :
((expCostsR — OPTR) / T <= epsR + 1n size_A / (epsR *x T))%R.

Informal:

(E[Cror (MWU)] — m;n Ceor(a)) /T < €+ l

n|A
eT

\ Y ] |\ Y l \
EXPECTED TOTAL COST OF BEST FIXED

COST OF MWU ACTION NUMBER OF SIZE OF
STEPS ACTION

SPACE



A Hierarchy of Refinements

High-Level Functional Specification

Definition update_weights (w:weights) (c: costs) 1 weights :=
finfun (fun a : A =>w a *x (1 - eps x c a)

A"ﬁﬂﬂﬂNES

MWU DSL _ _
Binary Arith. Operations Operational Semantics
b ri=+ | - | * |—C,O'$C',0"
Expressions
I D G ——
| eps REFINES
C lde b e | . Fixpoint interp (c:com A.t) (s:cstate)
ommands : option cstate := match c with .. end.
c ::= skip
| update f | .. Executable Interpreter

Even moderate-size proof developments (just like moderate-
size software developments!) benefit from abstraction



Update Weights

Definition update_ weights (w:weights) (c:costs) : weights :=
finfun (fun a : A =>w a *x (1 - eps *x c a)).

A'.WHQWNES

Definition update_weights (f : A.t —> expr A.t) (s : cstate)
: option (M.t Q) :=
M.fold

(fun a _ acc => Data Refinement
match acc with _
| None => None weights = A.t —> rat

| Some acc' =>

match evalc (f a) s with tREFII\E
| None => None Sweights s .
| Some q =>

match @ ?= q with
| Lt => Some (M.add a (Qred q) acc')
= N . .
ené gnd>en3?e Efficient RBTree
(SWeights s)
(Some (M.empty Q)).
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Extensions, Connections

Bandit Model

— revealing cost of all actions at each step imposes high
communication overhead

— assume, instead, only chosen action’s cost is revealed

— slightly more complex algorithms, slightly worse
bounds, but perhaps faster in practice?

Linear Programming

— Verified MWU as a verified approximate LP solver!
AdaBoost [Freund & Schapire ‘97]

[Aroraetal., ‘12]

— a treasure trove of additional connections!



Conclusion

Verified Multiplicative Weights Update:

— Machine-verifiedimplementation of a simple yet powerful
algorithm for “combining expert advice”

— Proofstrategy: layered
program refinements, from executable
MWU to high-level specification

Short/Medium Term Plans:
— From bounded regret to STCy

whole-system performance guarantees

— with applications to distributed systems (e.g,,
distributed routing, load balancing, etc.)



Thank Youl!

QUESTIONS?
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