Verified Learning Without Regret

A Mechanized Proof of the Multiplicative Weights Update Algorithm

Sam Merten (PhD)

Gordon Stewart

Assistant Professor, EECS

Ohio University

Alex Bagnall (MSc)

Software Is Hard!

In 2014 alone...

- April 2014: HeartBleed OpenSSL bug
 - buffer overread due to missing bounds check
 - 17% of servers running TLS affected
- September 2014: Shellshock
 - Bash unintended command execution
 - undiscovered for 25 years (!)
- October 2014: POODLE
 - TLS: for interoperability, fall back to SSL 3.0
 - ... exposing a padding oracle attack

2000s:

Toyota Unintended Acceleration

- lives lost...probably due to software
- \$1.2b settlement

What Do We Do About It?

Expressivity

Software Model Checking

SPARK Toolset

Static Analysis

Type Systems

 $\Gamma \vdash e_1 + e_2 : \tau$

Astrée

User Interaction

Interactive Theorem Proving

Trusted Computing Base

Which of these pieces do we need to trust?

Theorem Proving In Practice

```
🔾 State 😷 Context 🎮 Goal 🛣 Retract 🖪 Undo 🕨 Next 🔻 Use 🛏 Goto 🍿 Ged 🖀 Home 🔑 Find 🚯 Info 🔊 Command 🦶 Prooftree 😄 Interrupt 🚱 Restart 🜹 Help
Hypothesis (HAqt0: 0 < A).
(** The bound is proved assuming there exist
   real numbers [A] and [B] such that for any state [t],
   [Phi t] is bounded on the left by
   [Cost t / A] and bounded on the right by [B * Cost t]. *)
Hypothesis AB bound Phi:
 forall t : sT, Cost t / A \le Phi t \le B * Cost t.
(** Under the conditions stated above, the
   Price of Stability of any potential game is
   at most [A * B]. (For games in which the
   PNE is unique, this bound gives a bound on
   the Price of Anarchy as well.) *)
Lemma PoS bounded (t0:sT) (PNE t0:PNE t0):
 PoS t0 \leq A * B.
Proof.
 set (tN := Phi minimizer t0).
 generalize (minimal Phi minimizer t0); move/foralIP=> HtN.
 case: (andP (AB bound Phi tN))=> H3 H4; rewrite /PoS.
 set (tStar := arg min optimal Cost t0).
 move: (HtN tStar)=> H5.
 case: (andP (AB bound Phi tStar))=> H6 H7.
 rewrite ler pdivr mulr; last by apply: Cost pos.
 apply: ler trans.
```

PROOF SCRIPT

Used to construct independently checkable proof object

PROOF WINDOW

- current proof state
- including hypotheses & goals

MULTIPLICATIVE WEIGHTS UPDATE (MWU)

The Setting

Learning on-line, in uncertain environments

(For the remainder, I'll assume costs in range [0, 1].)

AGENT pays 0.9 total

Regret

A learning algorithm is **bounded regret** if it has constant expected cost wrt. the best fixed action, as the number of iterations $T \to \infty$.

$$Regret(A) \coloneqq \mathbf{E}[C_{tot}(A)] - \min_{a} C_{tot}(a)$$

AGENT pays 0.9 total

$$C_{tot}(\bigcirc) = 0.3$$

Regret =
$$0.9-0.3 = 0.6$$

Why (Verify) Regret?

Bounded-regret algorithms: natural *distributed* execution semantics yielding *approximate equilibria*

MACHINE-VERIFIED WHOLE-SYSTEM PERFORMANCE GUARANTEES

DISTRIBUTED ROUTING GAME

AGENT I: Regret At Most ϵ

AGENT 2: Regret At Most ϵ

. . .

AGENT N: Regret At Most ϵ

The MWU Algorithm

- Associate to each action a weight w(a)
- Choose actions by drawing from the distribution

$$p(a) = \frac{w(a)}{\sum_{b} w(b)}$$

Update weights according to the following rule

$$w^{i+1}(a) = w^i(a) * (1 - \epsilon * c^i(a))$$

$$\text{PARAMETER } \epsilon \in (0, \frac{1}{2}]$$

$$\text{MORE -> LESS EXPLORATION}$$

A Rose By Any Other Name...

- "Combining Expert Advice"
- Winnow
 - an algorithm for learning linear classifiers
 - [Littlestone '88]

- Weighted Majority Hedging
 - Exponential update rule:

$$w^{i+1}(a) = w^{i}(a) * (1 - \epsilon^{c^{i}(a)})$$

- AdaBoost / Boosting
 - [Freund and Schapire '97]

AGENT

AGENT

$$p(\bigcirc) = \frac{w^{10}(\bigcirc)}{1.24} = 0.33$$

AGENT

MWU Is Bounded Regret

Theorem: MWU is bounded regret.

$$\begin{array}{c|c} (\mathbf{E}[C_{tot}(MWU)] & -\min_{a} C_{tot}(a)) \ / \ T \leq \epsilon + \frac{\ln|A|}{\epsilon T} \\ \\ \text{EXPECTED TOTAL} & \text{COST OF BEST FIXED} \\ \text{COST OF MWU} & \text{ACTION} & \text{NUMBER OF} \\ \text{STEPS} & \text{ACTION} \\ \text{SPACE} \\ \end{array}$$

Proof: Potential function $\Gamma^i = \sum_a w^i(a)$

Corollary:

$$\frac{\mathbf{c} * \mathbf{ln} |A|}{\epsilon}$$
 steps to achieve $\epsilon + \frac{1}{c}$ per-step regret.

PART I

- Theorem Proving
- MWU By Example
- Bounded-Regret Learning & Why
- MWU Is Bounded Regret

PART II

- Formalizing MWU
- Verifying Regret

VERIFIED MWU

MWU Formalized

The Coq Proof Assistant

Core Files

```
spec proof comments
349    754    31 weights.v
738    932    75 weightslang.v
370    831    69 weightsextract.v
1457    2517    175 total
```

Auxiliary Files

spec	proof	comments		
269	1062	17	numerics.v	
75	3	1	strings.v	
110	80	5	dist.v	TOTAL:
60	109	11	extrema.v	6632 LOC
60	75	1	bigops.v	
42	475	28	neps_exp_le.v	
616	1804	63	total	
		_		

Theorem: MWU Is Bounded Regret

Formal:

```
Notation astar:= (best_action a0 cs).
Notation OPT := (\sum_(c <- cs) c astar).
Notation OPTR := (rat_to_R OPT).

... more definitions and notations ...

Lemma perstep_weights_noregret:
   ((expCostsR - OPTR) / T <= epsR + ln size_A / (epsR * T))%R.</pre>
```

Informal:

$$\begin{array}{c|c} (\mathbf{E}[C_{tot}(MWU)] & -\min_{a} C_{tot}(a)) \ / \ T \leq \epsilon + \frac{\ln|A|}{\epsilon T} \\ \\ \text{EXPECTED TOTAL} & \text{COST OF BEST FIXED} \\ \text{COST OF MWU} & \text{ACTION} & \text{NUMBER OF} \\ \text{STEPS} & \text{ACTION} \\ \text{SPACE} \\ \end{array}$$

A Hierarchy of Refinements

High-Level Functional Specification

```
Definition update_weights (w:weights) (c:costs) : weights := finfun (fun a : A => w \ a * (1 - eps * c \ a)).
```


MWU DSL

Binary Arith. Operations
b::= + | - | *
Expressions
e::= q

Operational Semantics

$$\vdash c, \sigma \Rightarrow c', \sigma'$$

Fixpoint interp (c:com A.t) (s:cstate)
: option cstate := match c with ... end.

Executable Interpreter

Even moderate-size proof developments (just like moderatesize software developments!) benefit from abstraction

Update Weights

```
Definition update_weights (w:weights) (c:costs) : weights :=
  finfun (fun a : A => w a * (1 - eps * c a)).
                REFINES
Definition update_weights (f : A.t -> expr A.t) (s : cstate)
  : option (M.t Q) :=
  M. fold
                                            Data Refinement
  (fun a _ acc =>
     match acc with
                                            weights = A.t -> rat
        None => None
        Some acc' =>
                                                REFINES
         match evalc (f a) s with
                                         Sweights s : (M.t Q
            None => None
            Some q =>
               match 0 ?= q with
                   Lt => Some (M.add a (Qred q) acc')
                   _ => None
                                                  Efficient RBTree
               end end end)
  (SWeights s)
  (Some (M.empty Q)).
```


Extensions, Connections

Bandit Model

- revealing cost of all actions at each step imposes high communication overhead
- assume, instead, only chosen action's cost is revealed
- slightly more complex algorithms, slightly worse bounds, but perhaps faster in practice?

Linear Programming

- Verified MWU as a verified approximate LP solver!
- AdaBoost [Freund & Schapire '97]
- [Arora et al., '12]
 - a treasure trove of additional connections!

Conclusion

Verified Multiplicative Weights Update:

 Machine-verified implementation of a simple yet powerful algorithm for "combining expert advice"

 $\boldsymbol{\chi}$

STCN

Proof strategy: layered
 program refinements, from executable
 MWU to high-level specification

Short/Medium Term Plans:

- From bounded regret to
 whole-system performance guarantees
- with applications to distributed systems (e.g., distributed routing, load balancing, etc.)

Thank You!

QUESTIONS?

References

[Arora et al., '12]: The Multiplicative Weights Update Method: A Meta-Algorithm and Applications. Theory of Computing, Volume 8 (2012), pp. 121–164.

[Freund & Schapire '97]: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Comp. and System Sci. 55, 119-139 (1997).

[Littlestone, '88]: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. *Machine Learning* 2.4 (1988): pp. 285-318.