Progress & Preservation Considered Boring!
A Paean to Parametricity

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbriicken, Germany

PLMW 2014
San Diego

Parametricity at POPL 2014

> b talks this week related to parametricity and
logical relations:

e Birkedal: Modular reasoning about concurrent
higher-order imperative programs

e Brookes, O'Hearn, Reddy: The Essence of Reynolds

o Atkey: From parametricity to conservation laws, via
Noether’s theorem

o Atkey, Ghani, Johann: A relationally parametric model
of dependent type theory

e Benton, Hofmann, Nigam: Abstract effects and
proof-relevant logical relations

Parametricity: who needs it?

What are type systems good for?

Types and

Programming
Languages

Benjamin C. Pierce

What are type systems good for?

(1) Detecting a certain class of runtime errors
e e.g., cannot apply an integer as if it were a function
o “Well-typed programs don't get stuck”

This is what syntactic type safety is all about.

Progress: If e: A, then e ~ € or e is a value.
Preservation: If e: A and e ~ €, then €' : A.

What are type systems good for?

(2) Data abstraction: modules, ADTs, classes, etc.
e Enforcing invariants on a module’s private data structures

e Representation independence: should be able to change
private data representation without affecting clients

Together, these properties are often called
abstraction safety.

Points of this talk

@ Type safety does not imply abstraction safety!

@ Parametricity = Type safety + Abstraction safety

@ Logical relations
= How we formally reason about parametricity

Why do we teach our students progress & preservation
rather than parametricity?

Until recently, parametricity was not developed
enough to be able to account for ML-like languages,

whereas P&P scales easily. . .
@ ...but this is no longer the case.

Parametricity is often presented using “scary”

denotational semantics:

@ It's not necessary; one can build logical relations directly
over operational semantics

Why do we teach our students progress & preservation
rather than parametricity?

Until recently, parametricity was not developed

So there are no more excuses!

@ It's not necessary; one can build logical relations directly
over operational semantics

A simple motivating example

A simple motivating example: Enumeration types

Interface:

COLOR = da. {red: a,

blue : «,
print : a — String }

Intended behavior:

print red ~ "red"
print blue ~» "blue"

A simple motivating example: Enumeration types

One implementation, with o« = Nat:

ColorNat = pack Nat, {

red = 0,
blue =1,
print = Ax. match x with
0 = "red"
| 1 = "blue"
| _ = "FAIL"

} as COLOR

A simple motivating example: Enumeration types

One implementation, with o« = Nat:

ColorNat = pack Nat, {

red = 0,
blue =1,
print = Ax. match x with
0 = "red"
| 1 = "blue"

| - =["FAIL"]
} as COLOR

A simple motivating example: Enumeration types

One implementation, with o« = Nat:

L

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

| _ = |"FAIL"
} as COLOR

A simple motivating example: Enumeration types

Another implementation, with o = Bool:

ColorBool = pack Bool, {

red = true,
blue = false,
print = Ax. match x with

true = "red"
| false = "blue"
} as COLOR

A simple motivating example: Enumeration types

Another implementation, with o = Bool:

Goal #2: Representation Independence

Prove that the two implementations of Color
are contextually equivalent.

} as COLOR

Representation independence subsumes invariants

If we can prove

ColorNat =, ColorBool : COLOR,

then since ColorBool's print function never returns "FATIL",
that means ColorNat's print function never returns "FAIL".

More generally, Goal #2 subsumes Goal #1.

The trouble with type safety

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : Ya. a — Bool

with the semantics:

true ifv=20

eqZerov ~~ _
false otherwise

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : Ya. a — Bool

with the semantics:

true ifv=20

eqZerov ~~ _
false otherwise

Observation:
e eqZero IS type-safe

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : Ya. a — Bool

with the semantics:

true ifv=20

eqZerov ~ _
false otherwise

Observation:
e eqZero IS type-safe but NOT abstraction-safe!

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorNat as [a,{red,blue,print}] in

eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

eqZero 0

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

true

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [«,{red,blue,print}] in

eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

eqZero true

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

false

eqZero breaks representation independence!

Bottom Line

Type safety does not guarantee abstraction safety.

Logical relations to the rescue!

Logical relations and representation independence

We say e; and e, are logically related at da. A
(written e; ~ e, : Ja.A) if:
e There exists a “simulation relation” R between their

private representations of « that is preserved by their
operations (of type A)

e Intuition: (v1,v2) € R means that v; and v, are two
different representations of the same “abstract value”

Logical relations and representation independence

We say e; and e, are logically related at da. A
(written e; ~ e, : Ja.A) if:
e There exists a “simulation relation” R between their

private representations of « that is preserved by their
operations (of type A)

e Intuition: (v1,v2) € R means that v; and v, are two
different representations of the same “abstract value”

Theorem (Representation Independence)
If He; ~er: A, thent e; =« e 1 A.

Proof that ColorNat and ColorBool are logically related

Returning to our motivating example, let's show:

I ColorNat ~ ColorBool : COLOR

Proof that ColorNat and ColorBool are logically related

pack Nat, {
red = 0,
F|{ blue =1,

} as COLOR

print = Ax. ...

Q

pack Bool, {
red = true,
blue = false,

print = Ax. ...
} as COLOR

do. { red : «,
blue : «,
print : a — String }

Proof that ColorNat and ColorBool are logically related

a— R F

Pick R = {(0,true),(1,false)}

as our simulation relation for «.

{ {
red = 0, red = true,
blue = 1, ~ blue = false,
print = Ax. ... print = Ax. ...
} }
{red : «,
blue : «,

print : a — String }

Proof that ColorNat and ColorBool are logically related

a— R F

Pick R = {(0,true),(1,false)}

as our simulation relation for «.

{ {
red = 0, red = true,
blue = 1, ~ blue = false,
print = Ax. ... print = Ax. ...
} }
{red : «,
blue : «,

print : a — String }

Proof that ColorNat and ColorBool are logically related

a— R F

Pick R = {(0,true),(1,false)}

as our simulation relation for «.

{ {
red = 0, red = true,
blue = 1, ~ blue = false,
print = Ax. ... print = Ax. ...
} }
{red : «,
blue : «,

print : a — String }

Proof that ColorNat and ColorBool are logically related

ar— R

Pick R = {(0,true),(1,false)}
as our simulation relation for a.

{ {
red = 0, red = true,
blue = 1, ~ blue = false,
print = Ax. ... print = Ax. ...
} }
{red : «,
blue : «,

print : o — String }

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for a.

AXx. match x with AXx. match x with
0= "red" true = "red"
a—REF ~
| 1= "blue" | false = "blue"
| _ = "FAIL"

a — String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for a.

Suppose a— R EF vy = v, @ a.

match v; with match v, with
- 0 = "red" -~ true = "red"

| 1 = "blue" | false = "blue"

| _ = "FAIL"

String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for a.

Suppose (vi,v2) € R.

match v; with match v, with
- 0= "red" -~ true = "red"

| 1 = "blue" | false = "blue"

| _ = "FAIL"

String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for a.

Case: vi = 0 and vy = true.

match 0 with match true with
0= "red" true = "red"
a—RF ~
| 1 = "blue" | false = "blue"
| _ = "FAIL"

String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}

as our simulation relation for a.

Case: vi = 1 and vy, = false.

match 1 with match false with
0= "red" true = "red"
a—REF ~
| 1 = "blue" | false = "blue"
| _ = "FAIL"

String

Proof that ColorNat and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for a.

QED!

OK, that was pretty trivial, let's not get too excited. ..

String

The flip side: Client-side abstraction

In order for representation independence to work,
clients must behave “parametrically”.
e We must rule out non-parametric functions like eqZero.

The flip side: Client-side abstraction

In order for representation independence to work,

clients must behave “parametrically”.
e We must rule out non-parametric functions like eqZero.

Theorem (Abstraction)
If —e: A thenFe~xe:A.

This theorem looks weirdly trivial, but it is not!

e The logical relation only relates “well-behaved” terms,
i.e., terms that are parametric and don't get stuck.

e Type safety falls out as an easy corollary.

Proof that eqZero is not well-typed

Suppose F f : Va. a — Bool

Proof that eqZero is not well-typed

Ya. a — Bool

= f
F f~f: VYVa a— Bool

Proof that eqZero is not well-typed

Pick R = Val x Val
as our simulation relation for a.

F f : VYa. a — Bool
~ f f : Ya. a — Bool
a—R + f f : a — Bool

Y
~o
Y
~Y

Proof that eqZero is not well-typed

Pick R = Val x Val
as our simulation relation for a.

- f : VYa. a — Bool
- f f . Ya. a — Bool
a—R F f f : a— Bool
YWi,vo. a—R F f(vi) = f(vo) : Bool

Y
~o
Y
~Y

Proof that eqZero is not well-typed

Pick R = Val x Val
as our simulation relation for a.

- f : VYa. a — Bool
- f f . Ya. a — Bool
a—R F f f : a— Bool
YWi,vo. a—R F f(vi) = f(vo) : Bool

Y
~o
Y
~Y

So f is a constant function, and cannot be eqZero!

Proof that eqZero is not well-typed

Pick R = Val x Val
as our simulation relation for a.

This is an example of a
free theorem (Wadler, 1989).

So f is a constant function, and cannot be eqZero!

Summary

Theorem (Representation Independence)
If He; ~ey: A, then Fe; =« e 1 A.

Theorem (Abstraction)
If —e: A thenFe~xe:A.

Summary

“Type structure is a syntactic discipline
for enforcing levels of abstraction.”

— John Reynolds

Classic papers on parametricity

Reynolds (1983):
e Types, abstraction and parametric polymorphism

@ Introduces parametricity and the abstraction theorem:
one of the most important papers in PL history

Mitchell (1986):

o Representation independence and data abstraction

e Applies parametricity in order to prove representation
independence for existential types

Wadler (1989):
o Theorems for free!

e Applies parametricity in order to prove many interesting
“free theorems” about universal types

Research on parametricity (a very rough picture)

Going beyond System F

e Expanding the theory of parametricity to encompass
more sophisticated and/or realistic language features

Universalism

e Exploring properties that hold of all terms of a certain
(usually universal) type, cf. Wadler's free theorems

@ Do these theorems still hold in languages with effects?
e What interesting free theorems do “sexy” types have?

Existentialism

e Exploring the theory of representation independence in
languages with state, continuations, concurrency, etc.

e Applications to verification (e.g., certified compilers)

Recommended universalist reading

Kennedy (1997):
o Relational parametricity and units of measure

o Presents types for units of measure (now in F),
and explains their benefits in terms of free theorems

Johann, Voigtlander (2004):
o Free theorems in the presence of seq

e Shows that free theorems are not so free, even in a pure
language like Haskell, due to the strictness operator seq

Atkey (2012):
o Relational parametricity for higher kinds

e Extends parametricity to higher kinds using
“reflexive graphs”, but without explicit category theory

Recommended existentialist reading (if you tire of Camus)

Pitts, Stark (1998):
e Operational reasoning for functions with local state

o Presents “Kripke logical relation” for representation
independence in simplified ML-like language

Appel, McAllester (2001):

e An indexed model of recursive types for
foundational proof-carrying code

@ Proposes the “step-indexed” logical-relations model, now
an essential tool in scaling parametricity to real languages

Ahmed, Dreyer, Rossberg (2009):

o State-dependent representation independence

e First paper to scale parametricity & rep. ind. to
a full-blown ML-like language (u, ¥, 3, higher-order state)

A little advice. ..

Don't be afraid of working on an “old, hard” problem!

The problem may not be as hard as it seems

@ Just because famous researchers X, Y and Z couldn’t
solve it doesn't mean you can't!

e It might not require superhuman technical abilities to
make progress, just a fresh perspective and the “right” set
of abstractions.

It can be a gold mine

@ Deep problems lead to other deep problems, thus
guaranteeing you won't run out of things to work on.

e e.g., | would never have guessed when we wrote our
POPL'09 paper that our ideas would be relevant to
verifying lock-free concurrent data structures,
or compiler correctness, or security, or. . .

The Parametric Facebook

Many of the world’s experts on parametricity are
here. Talk to them!

Here's a starting point:

http://www.mpi-sws.org/~dreyer/parametric

http://www.mpi-sws.org/~dreyer/parametric

