
Brief Announcement: Certified Multiplicative Weights Update
Verified Learning Without Regret

Alexander Bagnall

Ohio University

ab667712@ohio.edu

Samuel Merten

Ohio University

sm137907@ohio.edu

Gordon Stewart

Ohio University

gstewart@ohio.edu

ABSTRACT
�e Multiplicative Weights Update method (MWU) is a simple

yet powerful algorithm for learning linear classi�ers, for ensem-

ble learning à la boosting, for approximately solving linear and

semide�nite systems, for computing approximate solutions to mul-

ticommodity �ow problems, and for online convex optimization,

among other applications.

In this brief announcement, we apply techniques from interactive

theorem proving to de�ne and prove correct the �rst formally

veri�ed implementation of MWU (speci�cally, we show that our

MWU is no regret). Our primary application – and one justi�cation

of the relevance of our work to the PODC community – is to veri�ed

multi-agent systems, such as distributed multi-agent network �ow

and load balancing games, for which veri�ed MWU provides a

convenient method for distributed computation of approximate

Coarse Correlated Equilibria.

CCS CONCEPTS
•�eory of computation → Program veri�cation; Algorith-
mic game theory; Convergence and learning in games; Multi-agent

learning; Network games; •So�ware and its engineering→ Dis-
tributed systems organizing principles;

KEYWORDS
�e Multiplicative Weights Update Method; Interactive �eorem

Proving; Coq

1 INTRODUCTION
�e Multiplicative Weights Update method (MWU, [1, 6]) solves the

general problem of “combining expert advice”, in which an agent

repeatedly chooses which action, or “expert”, to play against an

adaptive environment. �e agent, a�er playing an action, learns

from the environment both the cost of that action and of other

actions it could have played in that round. �e environment, in

turn, may adapt in order to minimize environment costs. MWU

works by maintaining a weighted distribution over the action space,

in which each action initially has equal weight, and by updating

weights with a linear or exponential loss function to penalize poorly

performing actions.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’17, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4992-5/17/07. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3087801.3087852

�is simple algorithm performs remarkably well: In number

of rounds logarithmic in the size of the action space, MWU’s ex-

pected cost approaches to within a small bound ϵ that of the best

�xed action the agent could have chosen in hindsight (MWU has

bounded external regret). In [1], Arora, Hazan, and Kale showed

that MWU has wide-ranging connections to numerous problems in

computer science, including optimization, linear and semide�nite

programming, and machine learning (cf. boosting [4]).

Our work targets another important application of MWU that is

perhaps of greater interest to the PODC community: the approxi-

mate solution of multi-agent games, especially as such games relate

to the construction of distributed systems. It is well known (cf. [7,

Chapter 4]) that no-regret algorithms converge, in expectation

when played by multiple independent agents, to a large equilibrium

class known as Coarse Correlated Equilibria (CCEs). CCEs may

not be socially optimal, but for some games (e.g., Roughgarden’s

smooth games [8]) the social, or objective, cost of such equilibrium

states can be bounded with respect to the optimal cost (the Price of

Anarchy, or POA, of the game). Our broader research program, the

Cage project:

h�ps://github.com/gstew5/cage

seeks to use such results and others from algorithmic game theory

and distributed optimization to build distributed systems – e.g.,

distributed network routers and load balancers – that have veri�ed

convergence and correctness properties by design.

Contributions. In promotion of the �rst part of our broader re-

search program, this brief announcement reports on the design,

construction, and veri�cation of the �rst formally certi�ed imple-

mentation of the MWU algorithm, available open-source on the

Cage project’s website.

By veri�ed, we mean our MWU implementation has mechani-

cally checked convergence bounds and correctness proof within an

interactive theorem prover (speci�cally, Ssre�ect [5], an extension

of the Coq [2] system). By convergence and correctness, we mean

that we prove both that MWU produces the right answer (func-

tional correctness wrt. a high-level functional speci�cation), but

also that it does so with external regret bounded by a function of

the number of iterations of the protocol (convergence).

As we’ve mentioned, MWU has broad application across a num-

ber of subdisciplines of computer science, including linear pro-

gramming, optimization, and machine learning. Our work uses

MWU to implement no-regret dynamics, a general strategy for

computing the CCEs of multi-agent games. By formally proving

correctness and convergence results for our implementation of

MWU, we demonstrate a new architecture for formal veri�cation of

(a subclass of) distributed systems: represent the system as a game,

prove POA bounds for the game, then compose the POA results

https://github.com/gstew5/cage

Operational	 Semantics

Executable	 Interpreter

High-‐‑Level	 Functional	 Specification

Fixpoint interp (c:com A.t) (s:cstate)
: option cstate := match c with … end.

⊢ 𝑐, 𝜎 ⇒ 𝑐B, 𝜎′

Definition update_weights (w:weights) (c:costs)
: weights := finfun (fun a:A => w a * (1 - eta*(c a))).

REFINES

REFINES

MWU	 DSL

H
igh

M
edium

Low

IMPLEMENTS

MODELS

Figure 1: MWU Architecture

with our general proof of correctness and convergence of MWU –

which drives any such game to an approximate CCE, or ϵ-CCE –

to yield correctness and performance results of the overall system.

Section 3 sketches how these pieces �t together when applied to

problem of distributed routing with a�ne latency functions.

2 MWU IMPLEMENTATION AND PROOF
Our implementation and proof of MWU (Figure 1) were designed to

be extensible. At a high level, the structure of the proof follows the

program re�nement methodology, in which a high-level mathemat-

ical but ine�cient speci�cation of the MWU algorithm (High-Level

Functional Speci�cation) is gradually made more e�cient by a se-

ries of re�nements to various features of the program (for example,

by replacing an ine�cient implementation of a key-value map with

a more e�cient balanced binary tree).

For each such re�nement, we prove that every behavior of the

lower-level program is one of the acceptable behaviors of the higher-

level program it re�nes. �us speci�cations proved for all behaviors

of the high-level program also apply to each behavior at the low

level. By behavior here, we mean the trace of action distributions

output by MWU as it interacts with, and receives cost vectors from,

the environment.

In order to make our MWU implementation and proof extensible,

we factor the lower implementation layers (Medium and Low) into

an interpreter and semantics over a domain-speci�c language spe-

cialized to MWU-style algorithms. �e DSL de�nes commands for

updating the weights table as well as commands for interacting with

the environment, in the style of process calculi or message-passing

concurrency.

At the top level, the convergence theorem we prove of our high-

level functional MWU is:

Theorem perstep weights boundedregret :
(expCostsR − OPTR)/T ≤ etaR + (ln size A) / (etaR∗T).

Here expCostsR is the expected cost of MWU on a sequence of cost

vectors, OPTR is the cumulative cost of the best �xed action, etaR
is the algorithm’s exploration parameter η (required to lie in the

range (0,1/2]), ln size A is the natural log of the size of the action

space A, and T is the number of time steps.

𝑓" 𝑥 = 𝑥

𝑓% 𝑥 = 10𝑥 + 10

𝑓) 𝑥 = 𝑥

Agentj

Agenti

Figure 2: Routing game with source s, sink t , and a�ne cost
functions fe (x) = aex + be where x is the amount of tra�c
on an edge e. Solutions of the game are assignments of play-
ers to source-sink paths. An optimal solutionminimizes the
total cost to all players.

�e exploration parameter η controls how quickly actions are

penalized in MWU’s update rule wt+1 (a) = wt (a) · (1 − η · ct (a)),
and can therefore be tuned to balance exploration of the state

space versus exploitation of cost information learned from the

environment. Since our MWU interpreter performs exact rational

arithmetic (in fact, dyadic rational arithmetic for performance), we

require that η be representable as a dyadic rational number.

As a second consequence of our use of exact arithmetic, our

veri�ed MWU uses the linear scaling term 1 − η · c (a) to update

the weight of action a in each round, where c (a) denotes the cost

of a in the previous round. A variant of the algorithm uses the

exponential scaling term exp (−η ·c (a)), which we cannot represent

exactly in our executable version of MWU. One could use the Taylor-

series approximation of ex to approximate exp (−η · c (a)) at each

update step, but only at the expense of additional reasoning about

approximation error bounds in the rest of the proof.

3 APPLICATIONS
No-regret algorithms such as MWU can be used to drive multi-

agent systems toward the ϵ-CCEs of arbitrary games. Although

the CCEs of general games may have high social cost, those of

smooth games, as identi�ed by Roughgarden [8], have robust Price

of Anarchy (POA) bounds that extend even to ϵ-CCEs.

Our generic algorithm for proving bounds on the social cost of

games like multi-agent a�ne routing has the following steps:

(1) Prove that the game is (λ,µ)-smooth, for smoothness pa-

rameters λ and µ. �e smoothness parameters are speci�c

to the game. In a�ne routing, λ = 5

3
while µ = 1

3
.

(2) Use smoothness from (1) to prove robust POA bounds for

the game. For example, the POA of an ϵ-CCE of a (λ,µ)-

smooth game is
(1+ϵ)λ

1−(1+ϵ)µ . �e POA of a�ne routing wrt.

ϵ-CCEs is therefore approximately 5/2.

(3) Prove that N agents each running veri�ed MWU together

drive the system to an ϵ-CCE. �is proof follows directly

from the per-agent regret bound that results from each

agent running our veri�ed MWU.

(4) Compose the results in (2) and (3) to prove overall bounds

on the social cost of the resulting state.

We illustrate with an application – distributed routing – in which

we let multiple agents independently run our veri�ed MWU to

drive each other toward an ϵ-CCE.
1

In a simple version of the

distributed routing game with a�ne latency functions (Figure 2),

N routing agents each choose a path from a global source vertex

s to a global sink vertex t (a generalization of this game allows s
and t to di�er across players). Latency over edge e , modeled by an

a�ne cost function fe (x) = aex +be , scales in the amount of tra�c

x over that edge. An optimal solution minimizes the total cost to

all agents. Roughgarden [8] showed that such games are (5

3
, 1

3
)-

smooth, implying a robust POA bound of 5/2; thus even ϵ-CCEs as

produced by MWU are bounded with respect to the socially optimal

solutions of the game.

In Coq, we represent games as pairs (A,C) of

• a �nite type A, the strategy or action space; and

• a cost function C (i,s) : Q, which for a given player i ∈
[0,N) returns the cost to that player of state s , a strategy

pro�le of type [0,N) → A mapping players to strategies.

As an example game, consider a simpli�ed version of resource

(congestion) games [3] in which agents may choose to use (or not

use) just a single resource.
2

�e cost to a player of this game is the

total number of players using the resource (assuming the player

chooses to use the resource) and 0 otherwise.

In Coq, we represent this game’s strategy space A as the in-

ductive data type Resource , RYes | RNo in which the constructor

RYes indicates that the agent chose to use the resource and RNo
otherwise.

3
�e cost function for Resource is:

CResource (i,s) = if si is RYes then tra�ic s else 0

where tra�ic s equals the total number of agents who used the

resource in state s .
From basic games such as (Resource, CResource) we build more

complicated ones using a language of game combinators (functions

mapping games to games). For example, the product combinator

over games – which can be thought of informally as running two

games in parallel – takes as input games (A,CA) and (B,CB) and

produces as output the new game (A × B,CA×B) over states map-

ping players to ordered pairs (a,b). �e cost function CA×B of the

resulting game sums the costs with respect toCA andCB . To prove

smoothness of both basic games such as (Resource,CResource) and of

derived games, we developed a library of smoothness preservation

proofs following the structure of our language of game combinators.

In the product game, for example, if (A,CA) is (λA,µA)-smooth and

(B,CB) is (λB ,µB)-smooth, then (A × B,CA×B) is (max(λA,λB),
max(µA,µB))-smooth. We prove smoothness of basic games such

as (Resource, CResource) by mechanizing the standard paper-and-

pencil proofs (e.g., [8, 2.3.1] for congestion games).

In our implementation of the a�ne routing games of Figure 2, we

model each edge e in the network as a Resource under application

of a second combinator, A�ine(ae ,be ,CResource), which maps the

CResource cost function to the more general

Ce (i,s) = if si is RYes then ae ∗(tra�ic s) + be else 0.

�e resulting game over edge e has cost 0 if an agent does not use

edge e in state s , and cost ae ∗(tra�ic s) + be otherwise.

1
�e project website includes a second application, to distributed load balancing.

2
We generalize below to multiple-resource games with arbitrary a�ne cost functions.

3
We de�ne a new inductive type RYes | RNo as opposed to le�ing Resource equal the

isomorphic bool for technical reasons related to Coq’s typeclass resolution.

We generalize from games over a single edge to those over all

source-sink paths in a network in two steps:

First, we construct anm-edge game, in which the agents are free

to use any subset of the Resources modeling the graph’s edges, by

building the product ofm a�ne resources:

T ,

A�ine(ae1
,be1
,CResource)

× A�ine(ae2
,be2
,CResource)

...

× A�ine(aem ,bem ,CResource)

�e associated cost function of the game over type T is the sum of

the individual A�ine(a, b, CResource) cost functions.

Second, to transform the unrestricted game over type T – in

which players are free to choose any subset of the edges – to one

in which the players may choose only valid paths, we apply a

�nal combinator toT that limits the strategy space to those actions

satisfying a predicate, isValidPath(G,s,t), specifying the set of valid

paths from source s to sink t under a particular topology G.

All the combinators we apply in the a�ne routing game preserve

smoothness. To prove that the game thus implemented by N agents

each running MWU converges to an optimal routing con�guration,

it’s therefore su�cient to compose our MWU proof with the robust

POA guarantee we have proved generically for all smooth games.

Conclusion. �is brief announcement reports on the �rst for-

mally veri�ed implementation of Multiplicative Weights Update, a

simple yet powerful algorithm for approximately solving Coarse

Correlated Equilibria (CCE), among many other applications. We

prove our MWU implementation correct via a series of program

re�nements with respect to a high-level implementation of the algo-

rithm. As part of the larger Cage project, we use our certi�ed MWU

to prototype a new architecture for veri�ed distributed systems

in which MWU generically drives game-based distributed systems

with robust Price of Anarchy bounds to socially optimal CCEs.

ACKNOWLEDGMENTS
We thank the PODC reviewers for their comments on an earlier

dra�. �e research was supported in part by NSF award #1657358.

REFERENCES
[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. �e Multiplicative Weights

Update Method: a Meta-Algorithm and Applications. �eory of Computing 8, 1

(2012), 121–164.

[2] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer Science &

Business Media.

[3] George Christodoulou and Elias Koutsoupias. 2005. �e price of anarchy of �nite

congestion games. In Proceedings of the 37th annual ACM Symposium on �eory
of Computing. ACM, 67–73.

[4] Yoav Freund and Robert E Schapire. 1995. A decision-theoretic generalization

of on-line learning and an application to boosting. In European conference on
computational learning theory. Springer, 23–37.

[5] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2015. A small scale re�ection
extension for the Coq system. Technical Report. INRIA.

[6] Nick Li�lestone and Manfred K Warmuth. 1989. �e weighted majority algorithm.

In Proceedings of the 30th Annual Symposium on Foundations of Computer Science.
IEEE, 256–261.

[7] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. 2007. Algo-
rithmic Game �eory. Vol. 1. Cambridge University Press.

[8] Tim Roughgarden. 2009. Intrinsic robustness of the price of anarchy. In Pro-
ceedings of the 41st annual ACM Symposium on �eory of Computing. ACM,

513–522.

	Abstract
	1 Introduction
	2 MWU Implementation and Proof
	3 Applications
	Acknowledgments
	References

