
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Coinductive Trees for Exact Inference of Probabilistic Programs

ALEXANDER BAGNALL, Ohio University, United States
GORDON STEWART, Ohio University, United States
ANINDYA BANERJEE, IMDEA Software Institute, Spain

We propose a coinductive variant of Knuth-Yao trees (variously, Discrete
Distribution Generating trees) as an intermediate representation supporting
exact inference for probabilistic programs which may contain loops with
probabilistic termination conditions. We provide a prototype implemen-
tation of a probabilistic programming language, Zar, written in Haskell,
exemplifying both Knuth-Yao trees as well as exact inference on the trees.

1 INTRODUCTION
Probabilistic programmers define probabilistic models by writing
conventional imperative programs extended with primitives for
random sampling and conditioning. Inference is the problem of
computing an explicit representation of the probability distribution
implicitly specified by a probabilistic program in order to support
queries such as “What is the probability of event e?”, where e is a
predicate on program states or a possible return value. One can infer
a probabilistic program’s posterior distribution either approximately
(e.g., by sampling) or exactly using symbolic methods (e.g., compila-
tion to binary decision diagrams, or BDDs). When computationally
viable, exact inference is preferable to approximate techniques be-
cause it is deterministic, trustworthy, and does not propagate errors
to subsequent analyses.
Symbolic methods based on decision diagrams like BDDs have

seen most currency within the probabilistic model checking com-
munity (cf. [Miner and Parker 2004] for a survey). In this work, we
revisit the problem of exact inference for probabilistic programs and
propose a new intermediate representation based in Knuth-Yao (KY)
trees (alternatively, Discrete Distribution Generating trees [Knuth
and Yao 1976]). In contrast to existing recent work such as that of
Holtzen et al. [Holtzen et al. 2019] who compile only loop-free pro-
grams to BDDs, our KY tree representation enables exact inference
even of programs with almost-surely terminating loops. We have
a prototype implementation of our technique, Zar 1, that uses our
Knuth-Yao IR to do exact inference of programs in a conventional
probabilistic programming language.

2 KNUTH-YAO IR FOR ALMOST-SURE TERMINATION
As motivation, consider the probabilistic programs of Listings 1
and 2, the first of which terminates in all executions (it contains
no loops) while the second, which simulates a fair coin using a
biased one, terminates only with probability 1. If we understood
the program of Listing 1 as a random process mapping inputs bits
to outputs, we can therefore place an upper bound on the number
of bits required for the program to produce an output y (in this
1https://github.com/OUPL/Zar

Authors’ addresses: Alexander Bagnall, Ohio University, United States, ab667712@ohio.
edu; Gordon Stewart, Ohio University, United States, gstewart@ohio.edu; Anindya
Banerjee, IMDEA Software Institute, Spain, anindya.banerjee@imdea.org.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

x <~ flip (1/2)
y <~ if x then flip (1/2) else flip (1/4)
return y

Listing 1. A probabilistic program with no loops

x, y <- false , false
while (x = y):

x, y <~ flip (1/3), flip (1/3)
return x

Listing 2. Simulating a fair coin with a biased one

data TreeF a b = LeafF a | SplitF b b | NeverF
type Cotree a = Fix (TreeF a)
data Tree a = Leaf a

| Split (Maybe Label) (Tree a) (Tree a)
| Hole Label

phi :: Tree a -> TreeCoalgebra a
phi = ...

generate :: Tree a -> Cotree a
generate t = (unfold . phi) t (Hole 0)

Listing 3. Knuth-Yao trees in Haskell

case, 3). That the program terminates absolutely leads to a natural
interpretation as a finite function of boolean variables, which can
be compiled to a symbolic formula or BDD.

The program of Listing 2, which simulates a fair coin by flipping
the biased coins x and y until x = y, differs fundamentally from
that of Listing 1 in that the number of bits required to produce a
sample cannot be bounded above by any fixed constant. No finite
number of loop iterations suffices to guarantee termination—we can
say only that the program almost surely terminates, that is, does so
with probability 1.

T0

False
True 0

Fig. 1. Knuth-Yao representation of
Bernoulli(1/3)

We compile such pro-
grams to KY trees, possibly
infinite decision diagrams
such as the one of Figure 1
in which nodes represent
binary decisions and leaves,
results. The tree of Figure 1,
for example, returns True
with probability 1/3, corre-
sponding to the binary expansion of 1/3 as 0.01. To indicate the
cycle, we use T0 to label the root of the tree and 0 to indicate a
labeled “hole”, a tree expansion point that unfolds as T0.

KY trees may have arbitrary structure (consider a representation
of the Bernoulli distribution with p = π − 3). To do exact inference,
we target the subclass of KY trees that are finitely representable, as
sketched in Haskell in Listing 3. The main data type, Tree a, defines
labeled trees with leaves of type a and Holes, or corecursive expan-
sion points. We define a mapping from Trees to Cotrees, the final
coalgebra generated by the functor TreeF, as the function generate t,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/OUPL/Zar
https://doi.org/

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

1:2 • Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

e ::= . . .

c ::= skip
x := e
x f e
c1 ; c2
if e {c1} {c2}
observe e
while e c

(a) Syntax

JskipK(T) ≜ T

Jx := eK(T) ≜ bind T (λσ . Leaf σ [x := JeKσ])
Jx f eK(T) ≜ . . . //Bernoulli(p) and Uniform([. . .])
Jc1 ; c2K(T) ≜ Jc2K(Jc1K(T))

Jif e {c1} {c2}K(T) ≜ bind T (λσ . if JeKσ then Jc1K(Leaf σ) else Jc2K(Leaf σ))
Jobserve eK(T) ≜ bind T (λσ . if JeKσ then Leaf σ else Hole 0)
Jwhile e cK(T) ≜ bind T F

where F (σ) | ¬JeKσ ≜ Leaf σ
F (σ) | JeKσ ≜ Lbl ℓ (bind (JcK(Leaf σ)) (λσ ′. ifJeKσ ′ then Hole ℓ else Leaf σ ′)), ℓ fresh

(b) Semantics

Fig. 2. Zar syntax and semantics

the anamorphism unfold applied to the tree coalgebra produced by
phi t.

Semantics. We map programs in a conventional probabilistic
command language (Figure 2a) to KY trees using the semantics
of Figure 2b. Commands are interpreted as tree transformers in
which input trees T defining prior distributions over States σ are
mapped to output trees defining posterior distributions over results.
The function bind :: ∀a b. Tree a -> (a -> Tree b) -> Tree b applies
a continuation to the leaves of a tree. When interpreting an observe
statement, we bind to the leaves of the tree the continuation that
returns Leaf σ if the observe condition is satisfied, and Hole 0 oth-
erwise, indicating failure (a return to the distinguish root labeled
0). The interpretation of while loops does not take a fixed point,
instead generating a finite Tree describing the infinite process that
repeatedly executes the interpretation of the loop body JcK(Leaf σ).
Sampling a discrete distribution expression x f e (implementation
elided) generates a tree that assigns x the outcomes dictated by e ,
with the appropriate probabilities (our prototype currently supports
simple discrete distributions like Bernoulli and Uniform).

Exact Inference. Figure 3 shows the Tree generated by the seman-
tics of Figure 2b for the fair coin program of Listing 2. To perform
exact inference, we fix a return predicate f : State -> R whose ex-
pected value we wish to compute, then construct and solve the
system of equations induced by mapping f over the tree. The Fig-
ure 3 tree, for example, has leaves corresponding to f(σ) ≜ σ (x)

(projection of x , corresponding to return x). The resulting system
of linear equations (RHS of Figure 3) computes the weight of each
subtree, the probability that x = True. The weight of the root T0
gives the total weight of x . The system of linear equations generated
in this way has a unique solution iff the program interpreted by
the tree terminates with probability 1. The inferred distribution
is normalized despite the presence of observe statements in the
source language because branches inconsistent with observations
are made to loop to the root T0. An alternative representation sets
such branches to 0, yielding an unnormalized distribution.

3 RELATED WORK AND DISCUSSION
Both approximate and exact inference are theoretically hard [Roth
1996], but approximate techniques tend to perform better at scale.

T0

T1

0 T2

x = F 1

T3

0 T4

x = T T3

T0 = 1
2T1 +

1
2T3

T1 = 1
2T0 +

1
2T2

T2 = 1
2T1

T3 = 1
2T0 +

1
2T4

T4 = 1
2T3 +

1
2

Fig. 3. Knuth-Yao tree (left) for the fair coin program of Listing 2 together
with the corresponding system of equations (right)

Nonetheless, as [Holtzen et al. 2019] show, exact inference is of-
ten successfully applied in practice by exploiting repeating and
compositional structure that appears in many problem instances.
Holtzen et al. perform exact inference on finite-domain prob-

abilistic Boolean programs without loops by compiling them to
Boolean formulae (represented by BDDs) and applying weighted
model-counting (WMC) techniques on the resulting representations.
Compilation to BDDs, in contrast to path-based enumeration in-
ference methods (e.g., [Gehr et al. 2016]), exploits duplication and
conditional independence in order to minimize the size of the repre-
sentation, which in turn improves efficiency. Coinductive KY trees,
in addition to supporting probabilistic loops, lie in between full
path enumeration and compilation to BDDs. Since they are finitely
represented, duplication and otherwise unnecessary structure in KY
trees can be eliminated to improve performance.
In other closely related work, [Claret et al. 2013] use dataflow

analysis techniques to perform exact inference directly on the syn-
tax of finite-domain probabilistic programs, supporting inference
on probabilistic loops via computation of fixpoints. Zar supports
programs over (possibly infinite) discrete domains, but requires fi-
nite support, a restriction our implementation enforces by doing
dataflow analysis on Zar loops to ensure the absence of loop-carried
dependences (for example, between the values of integer i in an
almost surely terminating loop that increments i at each step).

REFERENCES
Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gordon, and Johannes

Borgström. 2013. Bayesian inference using data flow analysis. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 92–102.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Coinductive Trees for Exact Inference of Probabilistic Programs • 1:3

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Timon Gehr, Sasa Misailovic, andMartin Vechev. 2016. PSI: Exact symbolic inference for
probabilistic programs. In International Conference on Computer Aided Verification.
Springer, 62–83.

StevenHoltzen, ToddMillstein, andGuyVan den Broeck. 2019. Symbolic Exact Inference
for Discrete Probabilistic Programs. arXiv:cs.PL/1904.02079

Donald Knuth and Andrew Yao. 1976. The complexity of nonuniform random number
generation. Algorithm and Complexity, New Directions and Results (1976), 357–428.

Andrew Miner and David Parker. 2004. Symbolic representations and analysis of large
probabilistic systems. In Validation of Stochastic Systems. Springer, 296–338.

Dan Roth. 1996. On the hardness of approximate reasoning. Artificial Intelligence 82,
1-2 (1996), 273–302.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

http://arxiv.org/abs/cs.PL/1904.02079

	Abstract
	1 Introduction
	2 Knuth-Yao IR for Almost-Sure Termination
	3 Related Work and Discussion
	References

